(4x - 1)2 = (1 - 4x)4
Gíup mình tìm x nha mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt <=> (x^5-x^4)-(4x^4-4x^3)+(4x^2-4x)-(x-1) = 0
<=> (x-1).(x^4-4x^3+4x-1) = 0
<=> (x-1).[(x^4-x^3)-(3x^3-3x)+(x-1)] = 0
<=> (x-1).(x-1).(x^3-3x^2-3x+1) = 0
<=>(x-1)^2.[(x^3+x^2)-(4x^2+4x)+(x+1)] = 0
<=> (x-1)^2.(x+1).(x^2-4x+1) = 0
<=> x-1=0 hoặc x+1=0 hoặc x^2-4x+1=0
<=> x=1 hoặc x=-1 hoặc x=2+\(\sqrt{3}\)hoặc x = 2-\(\sqrt{3}\)
k mk nha
2:
=>x^3-1-2x^3-4x^6+4x^6+4x=6
=>-x^3+4x-7=0
=>x=-2,59
4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50
=>-62x+12=-50
=>x=1
\(1,x^2+4x+4=0\\ \Rightarrow\left(x+2\right)^2=0\\ \Rightarrow x+2=0\\ \Rightarrow x=-2\\ 2,x^2+4x+4=0\\ \Rightarrow\left(x+2\right)^2=0\\ \Rightarrow x+2=0\\ \Rightarrow x=-2\\ 3,\left(x+1\right)^2+2\left(x+1\right)=0\\ \Rightarrow\left(x+1\right)\left(x+1+2\right)=0\\ \Rightarrow\left(x+1\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
x2+4x+4=0
(x+2)2=0
x+2=0
x=+-2
câu 1 giống câu 2
(x+1)2+2(x+1)=0
(x+1+2)(x+1)=0
Th1: x+3=0 Th2: x+1=0
x=-3 x=-1
vậy ...
a: \(\Leftrightarrow\left(2-x\right)\left(x-3\right)+\left(x-1\right)\left(x+3\right)=-4x\)
\(\Leftrightarrow2x-6-x^2+3x+x^2+3x-x-3=-4x\)
=>7x-9=-4x
=>11x=9
hay x=9/11
b: \(\Leftrightarrow\left(5-x\right)\left(x-4\right)+\left(x+2\right)\left(x+4\right)=-3x\)
\(\Leftrightarrow5x-20-x^2+4x+x^2+6x+8=-3x\)
=>15x-12=-3x
=>18x=12
hay x=2/3
`@` `\text {Ans}`
`\downarrow`
`(4x - 1)^2 = (1 - 4x)^4`
`\Rightarrow (4x - 1)^2 - (1 - 4x)^4 = 0`
`\Rightarrow (4x - 1)^2 - (4x - 1)^4 = 0`
`\Rightarrow (4x - 1)^2. [1 - (4x - 1)^2] = 0`
`\Rightarrow`\(\left[{}\begin{matrix}\left(4x-1\right)^2=0\\1-\left(4x-1\right)^2=0\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}4x-1=0\\\left(4x-1\right)^2=1\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}4x=1\\4x-1=1\\4x-1=-1\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=\dfrac{1}{4}\\4x=2\\4x=0\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
Vậy, `x \in`\(\left\{0;\dfrac{1}{4};\dfrac{1}{2}\right\}\)