Thực hiện phép tính sau:
\(\frac{xy}{x-y}-\frac{2x^2}{y-2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x+y\right)}\)
\(=\frac{30x\left(x-y\right)-5x\left(x+y\right)}{5\left(x+y\right).10\left(x+y\right)}\)
\(=\frac{5x\left(5x-7y\right)}{50\left(x+y\right)\left(x-y\right)}\)
\(=\frac{x\left(5x-7y\right)}{\left(x+y\right)\left(x-y\right)}\)
chỗ cuối tớ sai
\(=\frac{x\left(5x-7y\right)}{10\left(x+y\right)\left(x-y\right)}\)
đây nha , e xin lỗi
\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
\(=\frac{2x}{x\left(x+y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2\left(x-2y\right)+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{3x-2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\y\ne0\\x\ne\pm2y\end{cases}}\)
\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{2}{x+2y}+\frac{1}{x-2y}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)\(=\frac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}+\frac{x+2y}{\left(x+2y\right)\left(x-2y\right)}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{2\left(x-2y\right)+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}=\frac{2x-4y+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{3x-2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
b) (ko chép lại đề nhé) \(=\frac{x^2\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}\cdot\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x^2-xy+y^2\right)}=\frac{x\left(x-y\right)}{y}\)
Đơn thức đầu tiên trong mẫu của phân thức thứ 2 có lẽ là \(x^3y\)
b: \(\dfrac{xy}{2x-y}-\dfrac{2x^2}{y-2x}=\dfrac{xy}{2x-y}+\dfrac{2x^2}{2x-y}=\dfrac{xy+2x^2}{2x-y}\)
b: \(\dfrac{3x^2-x}{x-1}+\dfrac{x+2}{1-x}+\dfrac{3-2x^2}{x-1}\)
\(=\dfrac{3x^2-x-x-2+3-2x^2}{x-1}\)
\(=\dfrac{x^2-2x+1}{x-1}=x-1\)
\(\frac{y}{2x^2-xy}+\frac{4x}{y^2-2xy}=0\)
<=>\(\frac{y}{x\left(2x-y\right)}-\frac{4x}{y\left(2x-y\right)}=0\)
<=>\(\frac{y^2}{xy\left(2x-y\right)}-\frac{4x^2}{xy\left(2x-y\right)}=0\)
=>y2-(2x)2=0
<=>(y-2x)(y+2x)=0
<=>y-2x=0 hoặc y+2x=0
M chỉ làm đc đến đó thôi!!!!!
\(=\left[\frac{2xy}{\left(x-y\right).\left(x+y\right)}+\frac{x-y}{2.\left(x+y\right)}\right]:\frac{x+y}{2x}+\frac{x}{y-x}\)
\(=\frac{4xy+\left(x-y\right).\left(x-y\right)}{2.\left(x-y\right).\left(x+y\right)}.\frac{2x}{x+y}+\frac{x}{y-x}\)
\(=\frac{x^2+2xy+y^2}{\left(x-y\right).\left(x+y\right)^2}.x+\frac{x}{y-x}\)
\(=\frac{x.\left(x+y\right)^2}{\left(x-y\right).\left(x+y\right)^2}+\frac{x}{y-x}\)
\(=\frac{x}{x-y}-\frac{x}{x-y}=0\)
Bạn giùm mik nhé, tks bạn nhiều (:
\(\dfrac{xy}{x-y}-\dfrac{2x^2}{y-2x}\)
\(=\dfrac{xy}{x-y}+\dfrac{2x^2}{2x-y}\)
\(=\dfrac{xy\left(2x-y\right)+2x^2\left(x-y\right)}{\left(x-y\right)\left(2x-y\right)}\)
\(=\dfrac{2x^2y-xy^2+2x^3-2x^2y}{\left(x-y\right)\left(2x-y\right)}\)
\(=\dfrac{2x^3-xy^2}{\left(x-y\right)\left(2x-y\right)}=\dfrac{x\left(2x^2-y^2\right)}{\left(x-y\right)\left(2x-y\right)}\)