Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x;y\ne0,x\ne\frac{y}{2},y\ne\frac{x}{2}\)
\(\frac{y}{2x^2-xy}+\frac{4x}{y^2-2xy}=\frac{y}{x\left(2x-y\right)}-\frac{4x}{y\left(2x-y\right)}\)\(=\frac{y^2-4x^2}{xy\left(2x-y\right)}=\frac{\left(y-2x\right)\left(y+2x\right)}{xy\left(2x-y\right)}\)
\(=\frac{-\left(y+2x\right)}{xy}\)
b) ĐKXĐ: \(x\ne2;x\ne-2\)
\(\frac{1}{x+2}+\frac{3}{x^2-4}+\frac{x-14}{\left(x^2+4x+4\right)\left(x-2\right)}\)\(=\frac{1}{x+2}+\frac{3}{\left(x-2\right)\left(x+2\right)}+\frac{x-14}{\left(x+2\right)^2\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x+2\right)+3\left(x+2\right)+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x^2+4x+4\right)-16}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x+2\right)^2-16}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x+2-4\right)\left(x+2+4\right)}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\frac{x+6}{\left(x+2\right)^2}\)
`a)`
`3x(2xy - 5x^2y)`
`= 3x*2xy + 3x* (-5x^2y)`
`= 6x^2y - 15x^3y`
`b)`
`2x^2y (xy - 4xy^2 + 7y)`
`= 2x^2y * xy + 2x^2y * (-4xy^2) + 2x^2y * 7y`
`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`
`c)`
`(-2/3xy^2 + 6yz^2)*(-1/2xy)`
`= (-2/3xy^2)*(-1/2xy) + 6yz^2 * (-1/2xy)`
`= 1/3x^2y^3 - 3xy^2z^2`
`a, 3x(2xy-5x^2y)`
`= 6x^2y - 15x^3y`
`b, 2x^2y(xy-4xy^2+7y)`
`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`
`c, (-2/3xy^2 + 6yz^2).(-1/2xy)`
`= 1/3x^2y^3 - 3xy^2z^2`
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
\(=\frac{2x}{x\left(x+y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2\left(x-2y\right)+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{3x-2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\y\ne0\\x\ne\pm2y\end{cases}}\)
\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{2}{x+2y}+\frac{1}{x-2y}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)\(=\frac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}+\frac{x+2y}{\left(x+2y\right)\left(x-2y\right)}+\frac{4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{2\left(x-2y\right)+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}=\frac{2x-4y+x+2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{3x-2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(\dfrac{xy}{x-y}-\dfrac{2x^2}{y-2x}\)
\(=\dfrac{xy}{x-y}+\dfrac{2x^2}{2x-y}\)
\(=\dfrac{xy\left(2x-y\right)+2x^2\left(x-y\right)}{\left(x-y\right)\left(2x-y\right)}\)
\(=\dfrac{2x^2y-xy^2+2x^3-2x^2y}{\left(x-y\right)\left(2x-y\right)}\)
\(=\dfrac{2x^3-xy^2}{\left(x-y\right)\left(2x-y\right)}=\dfrac{x\left(2x^2-y^2\right)}{\left(x-y\right)\left(2x-y\right)}\)
\(=\left[\frac{2xy}{\left(x-y\right).\left(x+y\right)}+\frac{x-y}{2.\left(x+y\right)}\right]:\frac{x+y}{2x}+\frac{x}{y-x}\)
\(=\frac{4xy+\left(x-y\right).\left(x-y\right)}{2.\left(x-y\right).\left(x+y\right)}.\frac{2x}{x+y}+\frac{x}{y-x}\)
\(=\frac{x^2+2xy+y^2}{\left(x-y\right).\left(x+y\right)^2}.x+\frac{x}{y-x}\)
\(=\frac{x.\left(x+y\right)^2}{\left(x-y\right).\left(x+y\right)^2}+\frac{x}{y-x}\)
\(=\frac{x}{x-y}-\frac{x}{x-y}=0\)
Bạn giùm mik nhé, tks bạn nhiều (:
\(\frac{y}{2x^2-xy}+\frac{4x}{y^2-2xy}=0\)
<=>\(\frac{y}{x\left(2x-y\right)}-\frac{4x}{y\left(2x-y\right)}=0\)
<=>\(\frac{y^2}{xy\left(2x-y\right)}-\frac{4x^2}{xy\left(2x-y\right)}=0\)
=>y2-(2x)2=0
<=>(y-2x)(y+2x)=0
<=>y-2x=0 hoặc y+2x=0
M chỉ làm đc đến đó thôi!!!!!