K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2015

a. vì HT ABCD có AD//BC => A+B=180(2 góc kề 1 cạnh bù nhau)

b. vì HT ABCD có AD//BC => C+D=180 

    Vậy A+B=C+D(=180)

c. ta có: A+B=180 , A-B=20

   => 2A=200 ->A=100, B=100-20=80

   ta có: C+D=180 , D=2C

       => C+2C=180

              3C=180

               C=60 -> D=2.60=120

Vậy A=100,B=80,C=60,D=120

cảm ơn ạ ~

31 tháng 8 2019

Bài 1: ( hình tự vẽ )

Vì \(AD//BC\left(gt\right)\)

\(\Rightarrow\widehat{A}+\widehat{B}=180^0\)( 2 góc trong cùng phía )  mà\(\widehat{A}-\widehat{B}=20^0\left(gt\right)\)

\(\Rightarrow\hept{\begin{cases}\widehat{A}=100^0\\\widehat{B}=80^0\end{cases}}\)

 \(\widehat{D}=2\widehat{B}=2.80^0=160^0\)

Do \(AD//BC\left(gt\right)\)

\(\Rightarrow\widehat{D}+\widehat{C}=180^0\)( 2 góc trong cùng phía )

\(\Rightarrow\widehat{C}=20^0\)

Vậy ...

18 tháng 9 2023

Vì AD vuông góc với hai đáy AB và CD nên \(\widehat{A}=\widehat{D}=90^0\)

Vì ABCD có 2 đáy AB,CD nên AB // CD. Do đó, \(\widehat B + \widehat C = 180^\circ \) ( 2 góc trong cùng phía)

Mặt khác:

\(\begin{array}{l}\widehat B = 2.\widehat C\\ \Rightarrow 2.\widehat C + \widehat C = 180^\circ \\ \Rightarrow 3.\widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ :3 = 60^\circ \end{array}\)

\(\Rightarrow \widehat B = 2. \widehat{C}=2.60^0=120^0\)

Vậy \(\widehat{A}=\widehat{D}=90^0; \widehat B = 120^0; \widehat C =60^0\)

17 tháng 10

2.2:3+1.2.2:3.2+1

9 tháng 9 2016
A=(180+20):2=100 D=(180-20):2=80 B+C=180->2C+C=180--> C=180:3=60 B=180-60=120
2 tháng 7 2018

Ta có A+D=180* ( 2 góc trong cùng phía bù nhau )

Mà A-D=20*

=>A=(180+20)/2=100*

=>D=180-100=80*

Áp dụng định lí tổng các góc trong hình thang ABCD có:

A+D+C+B=360*

=>100+80+C+B=360*

=>B+C=180*

Mà B=2C

=>2C+C=180*

=>3C=180

=>C=60

=>B=120

nếu bạn thấy đúng thì hãy  và kết bạn nha còn sai thì thôi mong bạn hãy bỏ qua

5 tháng 10 2021

\(a,\) Vì \(AB=AD\) nên tam giác ABD cân tại A

Do đó \(\widehat{ADB}=\widehat{ABD}\)

Mà \(\widehat{ABD}=\widehat{BDC}\left(so.le.trong.vì.AB//CD\right)\)

\(\Rightarrow\widehat{ADB}=\widehat{BDC}\)

Vậy BD là p/g \(\widehat{ADC}\)

\(b,\) Vì ABCD là hình thang cân và BD là p/g nên \(\widehat{ADB}=\widehat{BDC}=\dfrac{1}{2}\widehat{ADC}=\dfrac{1}{2}\widehat{BCD}\)

Mà \(\widehat{BDC}+\widehat{BCD}=90^0\left(\Delta BDC\perp B\right)\)

\(\Rightarrow\dfrac{1}{2}\widehat{BCD}+\widehat{BCD}=90^0\Rightarrow\widehat{BCD}=60^0\)

\(\Rightarrow\widehat{BCD}=\widehat{ADC}=60^0\)

Ta có \(\widehat{BCD}+\widehat{ABC}=180^0\left(trong.cùng.phía.vì.AB//CD\right)\)

\(\Rightarrow\widehat{ABC}=\widehat{BAD}=180^0-60^0=120^0\)