K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

em mới lên lớp 7 nên chưa giải đc

2 tháng 8 2023

e k b lm

1 tháng 8 2023

Kiến thức cần nhớ: \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\) hệ pt vô nghiệm ⇔\(\dfrac{a}{a'}=\dfrac{b}{b'}\ne\dfrac{c}{c'}\)

                                              hệ pt có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)

 

\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\) (1) ta có: a = 1; b =  -3; c = m và a' = 2; b' = - 6; c' = 8

Hệ (1) vô nghiệm ⇔ \(\dfrac{1}{2}\) = \(\dfrac{-3}{-6}\)  \(\ne\) \(\dfrac{m}{8}\)

                            ⇔  \(\dfrac{1}{2}\)            \(\ne\) \(\dfrac{m}{8}\)

                           ⇔   m \(\ne\) 4

Hệ (1) có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{1}{2}=\dfrac{-3}{-6}=\dfrac{m}{8}\) ⇔ \(\dfrac{1}{2}\) = \(\dfrac{m}{8}\) ⇔ m = 8\(\times\)\(\dfrac{1}{2}\) = 4

Kết luận:

+ hệ phương trình đã cho vô nghiệm khi m \(\ne\) 4 và có vô số nghiệm khi m = 4

1 tháng 8 2023

\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\)

\(D=-6+6=0\)

\(D_x=-6m+24\)

\(D_y=8-2m\)

Để hệ phương trình vô nghiệm

\(\Leftrightarrow D_x\ne0\cap D_y\ne0\left(D=0\right)\)

\(\Leftrightarrow-6m+24\ne0\cap8-2m\ne0\)

\(\Leftrightarrow m\ne4\)

Để hệ phương trình vô số nghiệm

\(\Leftrightarrow D=D_x=D_y=0\)

\(\Leftrightarrow m=4\) ( vì D luôn bằng 0)

1 tháng 8 2023

Cho hệ pt: \(\left\{{}\begin{matrix}x+2y=5\\ax+3y=a\end{matrix}\right.\) (1)

(1) vô nghiệm ⇔ \(\dfrac{1}{a}\) = \(\dfrac{2}{3}\) \(\ne\) \(\dfrac{5}{a}\) 

                       ⇒ a = \(\dfrac{3}{2}\) 

(1) có nghiệm duy nhất ⇔ \(\dfrac{1}{a}\) \(\ne\) \(\dfrac{2}{3}\) ⇒ \(a\) \(\ne\) 1 : \(\dfrac{2}{3}\) ⇒ \(a\ne\) \(\dfrac{3}{2}\)

2 tháng 8 2023

a) Hệ phương trình có nghiệm duy nhất là 

\(\left\{{}\begin{matrix}2x-y=3\\x+4y=6\end{matrix}\right.\)

b) Hệ phương trình có vô số nghiệm là 

\(\left\{{}\begin{matrix}2x-y=3\\4x-2y=6\end{matrix}\right.\)

NV
5 tháng 2 2021

\(\left\{{}\begin{matrix}m^2x+my=m\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=-1\\x+my=m+1\end{matrix}\right.\)

- Với \(m=\pm1\Rightarrow0.x=-1\) hệ vô nghiệm

- Không tồn tại m để hệ có vô số nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất

6 tháng 1 2021

\(\left\{{}\begin{matrix}D=m^2-4\\D_x=9m-32\\D_y=8m-9\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(D\ne0\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)

Hệ vô nghiệm khi \(\left\{{}\begin{matrix}D=0\\\left[{}\begin{matrix}D_x\ne0\\D_y\ne0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\\left[{}\begin{matrix}m\ne\dfrac{32}{9}\\m\ne\dfrac{9}{8}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow m=\pm2\)

a: \(\left\{{}\begin{matrix}ax+y=2a\\x-a=1-ay\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}ax+y=2a\\x+ay=a+1\end{matrix}\right.\)

Khi a=2 thì hệ sẽ là \(\left\{{}\begin{matrix}2x+y=4\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=6\end{matrix}\right.\)

=>-3y=-2 và x+2y=3

=>y=2/3 và x=3-2y=3-4/3=5/3

2:

a: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{a}{1}< >\dfrac{1}{a}\)

=>a^2<>1

=>a<>1 và a<>-1

Để hệ có vô số nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}=\dfrac{2a}{a+1}\)

=>a^2=1 và a^2+a=2a

=>a=1

Để hệ vô nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}< >\dfrac{2a}{a+1}\)

=>a^2=1 và a^2+a<>2a

=>a=-1