Tìm tất cả các số nguyên \(n\) sao cho \(n^4+2n^3+2n^2+n+7\) là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=n\left(n+1\right)\left(n+7\right)\left(n+8\right)\)
\(=\left(n^2+8n\right)\left(n^2+8n+7\right)\) (1)
Đặt \(t=n^2+8n\) Vì n > 0 nên t > 0
Vì A là số chính phương đặt A=k2 \(\left(k\in N\right)\) Vì t>0 => k > 0
(1) \(\Rightarrow\) \(t\left(t+7\right)=k^2\)
\(\Leftrightarrow4t^2+28t-4k^2=0\)
\(\Leftrightarrow\left(4t^2+28t+49\right)-4k^2-49=0\)
\(\Leftrightarrow\left(2t+7\right)^2-\left(2k\right)^2=49\)
\(\Leftrightarrow\left(2t+7-2k\right)\left(2t+7+2k\right)=49\)
Xét các ước của 49 với chú ý rằng \(2t+7-2k< 2t+7+2k\) vì k > 0 từ đó dễ dàng tìm được t
Sau đó ta tìm được các giá trị của n.
Xét không thỏa mãn.
Xét
Với thì:
Mặt khác, xét :
với mọi
Như vậy , suy ra để $A$ là số chính phương thì
Suy ra
\(n^4+2n^3+2n^2+n+7=k^2\)
\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)
\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)
\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)
\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)
Làm nôt
n+1930, n+2539 là số chính phương
Khi đó sẽ tồn tại số nguyên a, b sao cho:
\(n+1930=a^2,n+2539=b^2\)
Ta có: \(b^2-a^2=\left(n+2539\right)-\left(n+1930\right)=609\)
=> \(\left(b-a\right)\left(b+a\right)=1.609=609.1=-1.\left(-609\right)=\left(-609\right).\left(-1\right)\)
\(=3.203=203.3=-3.\left(-203\right)=\left(-203\right).\left(-3\right)\)
Vì a, b nguyên nên a-b và a+b nguyên
Em kẻ bảng làm tiếp nhé
Ta xét 3 trường hợp:
TH1: n<2010n<2010
⇒⎧⎪⎨⎪⎩n−2010<0n−2011<0n−2012<0⇒(n−2010)(n−2011)(n−2012)<0,⇒{n−2010<0n−2011<0n−2012<0⇒(n−2010)(n−2011)(n−2012)<0, không là số chính phương.
TH2: 2010≤n≤20122010≤n≤2012
Xét tường trường hợp của nn ta đều được A=0,A=0, là số chính phương.
TH3: n>2012n>2012
⇒⎧⎪⎨⎪⎩n−2010>0n−2011>0n−2012>0⇒{n−2010>0n−2011>0n−2012>0
Do đó AA là tích của 33 số nguyên dương liên tiếp, theo bổ đề thi AA không là số chính phương.
Vậy để AA là số chính phương thì n∈{2010; 2011; 2012}.n∈{2010; 2011; 2012}.
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Ta xét 3 trường hợp:
TH1: n<2010n<2010
⇒⎧⎪⎨⎪⎩n−2010<0n−2011<0n−2012<0⇒(n−2010)(n−2011)(n−2012)<0,⇒{n−2010<0n−2011<0n−2012<0⇒(n−2010)(n−2011)(n−2012)<0, không là số chính phương.
TH2: 2010≤n≤20122010≤n≤2012
Xét tường trường hợp của nn ta đều được A=0,A=0, là số chính phương.
TH3: n>2012n>2012
⇒⎧⎪⎨⎪⎩n−2010>0n−2011>0n−2012>0⇒{n−2010>0n−2011>0n−2012>0
Do đó AA là tích của 33 số nguyên dương liên tiếp, theo bổ đề thi AA không là số chính phương.
Vậy để AA là số chính phương thì n∈{2010; 2011; 2012}.n∈{2010; 2011; 2012}.
\(A=n^4+2n^3+2n^2+n+7\)
\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)
\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)
\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)
\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)
Ta lại có :
\(\left(n^2+n+1\right)^2-A\)
\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)
\(=n^2+n-6\)
Để \(n^2+n-6>0\)
\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)
Nên A không phải là số chính phương
Xét \(-3\le n\le2\)
Để A là số chính phương
\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)
Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương
\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài