Chứng minh rằng :
Tồn tại x ∈ Q : x2 = 2
Chú ý x ∈ Q ⇔ x= m/n ; m,n ∈ Z
giúp mik vs , mik cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T nghĩ đề nên là số 9 sẽ hợp lí hơn
\(x^2+y^2+z^2+x+3y+5z+9=0\)
\(\Rightarrow\left(x^2+x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\left(z^2+5z+\dfrac{25}{4}\right)+\dfrac{1}{4}=0\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\left(z+\dfrac{5}{2}\right)^2=-\dfrac{1}{4}\Leftrightarrow pt\) vô nghiệm
\(\Leftrightarrow4=0^2-\left(x^4+y^3\right)\)
\(\Leftrightarrow\left(0+\sqrt{x^4+y^3}\right)\left(0-\sqrt{x^4+y^3}\right)=4=1.4=4.1=2.2\)(Vì \(\left(0+\sqrt{x^4+y^3}\right)\)>=0)
Đến đây giải từng TH ta thấy x,y ko nguyên nên kết luận.
Còn cách nào khác không vậy? Nguyễn Việt Lâm
\(x^4-x^3+2x^2-x+1=0\)
\(\Rightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)
\(\Rightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)
\(\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
Mà \(\hept{\begin{cases}x^2+1>0\forall x\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)>0\forall x}\)
Vậy ko tồn tại x thỏa mãn \(x^4-x^3+2x^2-x+1=0\)