K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2023

\(\left(y:2-2\right)\left(y:3-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}y:2-2=0\\y:3-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y:2=2\\y:3=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=2x2\\y=3x3\end{matrix}\right.\) \(\) \(\Rightarrow y\in\left\{4;9\right\}\)

28 tháng 3 2020

#maianhhappy

28 tháng 3 2020

bài 1 tính giá trị biểu thức

( - 25 ) nhân ( -3 ) nhân x với x = 4

\(\left(-25\right).\left(-3\right).4\)

\(=\left(-25\right).4.\left(-3\right)\)

\(=-100.\left(-3\right)=300\)

( -1 ) nhân ( -4 ) nhân 5 nhân 8 nhân y với y =25

\(\left(-1\right).\left(-4\right).5.8.25\)

\(=4.5.8.25=4.25.5.8\)

\(=100.40=40000\)

( 2ab mũ 2 ) : c với a =4 ; b= -6 ; c =12

\(\left(2.4.\left(-6\right)\right)^2:12\)

\(=\left(-48\right)^2:12\)

\(=2304:12=192\)

[ ( -25 ) nhân ( - 27 ) nhân ( -x ) ] : y với x = 4 ; y = -9

\(\left[\left(-25\right).\left(-27\right).\left(-4\right)\right]:-9\)

\(=-2700:\left(-9\right)\)

\(=300\)

(a mũ 2 _ b mũ 2) : ( a + b ) nhân ( a _ b ) với a + 5 , b = -3

\(\left(5^2-\left(-3\right)^2\right):\left(5-3\right).\left(5+3\right)\)

\(=16:2.8\)

\(=8.8=64\)

28 tháng 8 2019

2

a

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)

b

Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)

Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)

Áp dụng kết quả câu a ta được:

\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

24 tháng 7 2019

Bạn chú thích hơi quá lố :) 

Ta có :( 5x - 3y + 4z ) . ( 5x - 3y - 4z ) \(=\left(5x-3y\right)^2-16z^2\)

\(=25x^2-30xy+9y^2-16z^2\)

Mà x^2=y^2 + z^2 nên ( 5x - 3y + 4z ) . ( 5x - 3y - 4z )\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)

\(=9x^2-30xy+25y^2=\left(3x-5y\right)^2\)

Học tốt !

24 tháng 7 2019

\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y^2\right)\)

\(\Leftrightarrow\left(5x-3y\right)^2-16z^2-\left(3x-5y\right)^2=0\)

\(\Leftrightarrow\left(5x-3y-3x+5y\right)\left(5x-3y+3x-5y\right)-16z^2=0\)

\(\Leftrightarrow16x^2=16y^2+16z^2\)(luôn đúng)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

3 tháng 2 2017