Cho S= \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (a,b,c thuộc N* ) . tìm a,b,c để S lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a+1/b+1/c=1
vì bai trò của a,b,c như nhau nên không mất tính tổng quát ta giả sử a nhỏ hơn hoặc bằng b nhỏ hơn hoặc bằng c
suy ra 1/a lớn hơn hoặc bằng 1/b lớn hơn hoặc bằng 1/c
suy ra 1/a+1/a+1/a lớn hơn hoặc bằng 1/a+1/b+1/c
suy ra a nhỏ hơn hoặc bằng 3 mà 1/a+1/b+1/c=1 nên a>1 vậy a có giá trị lả 2 hoặc 3
* nếu a=3 giải như trên ta có nếu b=2 thì c=6
nếu b=3 thì c=3
*nếu a=2 thì ta có
- nếu b=3 thì c=6
- nếu b=4 thì c=4
tóm lại :
a=3;b=2;c=6
a=b=c=3
a=2;b=3;c=6
a=2;b=c=4
a) ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)
tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)
=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)
mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)
cộng từng vế ta có \(S\ge9\)
dấu = xảy ra <=> a=b=c=1/2
câu 2 tương tự
chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin
bạn giải rõ cho mình với...mình cầu xin bạn đó Nguyễn Thị Hương
Để S lớn nhất thì 1/a, 1/b, 1/c phải lớn nhất
=> S lớn nhất khi a = b = c = 1
=> S = 1/1 + 1/1 + 1/1 = 3
tk nha
Bài 1 :
Ta có : \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Ta chứng minh BĐT \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)
Thật vậy : BĐT \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\) ( đúng )
Vậy \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)
Áp dụng vào bài toán ta có : \(S\ge2+2+2=6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Vậy min \(S=6\) tại \(a=b=c\)
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
\(S=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1\). Để S lớn nhất thì 1/a, 1/b, 1/c lớn nhất
=> a,b,c là số nguyên dương bé nhất
Nếu a=b=c=3 thì S=1 (loại)
Vậy a=3 ; b=3 ; c=4