Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho S=1+7+7^2+..... +7^2021
CMR: S chia hết cho 8, S chia hết cho 57
S=1+7+...+72021
S=(1+7)+(72+73)+...+(72020+72021)
=(1+7)+72(1+7)+...+72020(1+7)⋮8
Để chứng minh S chia hết cho 57, ta cần chứng minh (7^2021 - 1) chia hết cho 342 (vì 342 = 57 * 6).
Ta biểu diễn 7^2021 - 1 dưới dạng (7^3)^673 - 1, và áp dụng công thức a^3 - b^3 = (a - b)(a^2 + ab + b^2), ta có:
(7^3)^673 - 1 = (7^3 - 1)((7^3)^2 + 7^3 + 1)
Vì 7^3 - 1 = 342 và (7^3)^2 + 7^3 + 1 = 342^2 + 342 + 1 = 117649 + 342 + 1 = 118992 nên ta có:
(7^3)^673 - 1 = 342 * 118992
Vì 342 chia hết cho 57 nên (7^3)^673 - 1 chia hết cho 57.
Do đó S = (7^2021 - 1)/6 chia hết cho 57.
57 hay 56 vậy bạn?
S=1+7+...+72021
S=(1+7)+(72+73)+...+(72020+72021)
=(1+7)+72(1+7)+...+72020(1+7)⋮8
Để chứng minh S chia hết cho 57, ta cần chứng minh (7^2021 - 1) chia hết cho 342 (vì 342 = 57 * 6).
Ta biểu diễn 7^2021 - 1 dưới dạng (7^3)^673 - 1, và áp dụng công thức a^3 - b^3 = (a - b)(a^2 + ab + b^2), ta có:
(7^3)^673 - 1 = (7^3 - 1)((7^3)^2 + 7^3 + 1)
Vì 7^3 - 1 = 342 và (7^3)^2 + 7^3 + 1 = 342^2 + 342 + 1 = 117649 + 342 + 1 = 118992 nên ta có:
(7^3)^673 - 1 = 342 * 118992
Vì 342 chia hết cho 57 nên (7^3)^673 - 1 chia hết cho 57.
Do đó S = (7^2021 - 1)/6 chia hết cho 57.
57 hay 56 vậy bạn?