K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2023

S=1+7+...+72021

S=(1+7)+(72+73)+...+(72020+72021)

  =(1+7)+72(1+7)+...+72020(1+7)⋮8

Để chứng minh S chia hết cho 57, ta cần chứng minh (7^2021 - 1) chia hết cho 342 (vì 342 = 57 * 6).

Ta biểu diễn 7^2021 - 1 dưới dạng (7^3)^673 - 1, và áp dụng công thức a^3 - b^3 = (a - b)(a^2 + ab + b^2), ta có:

(7^3)^673 - 1 = (7^3 - 1)((7^3)^2 + 7^3 + 1)

Vì 7^3 - 1 = 342 và (7^3)^2 + 7^3 + 1 = 342^2 + 342 + 1 = 117649 + 342 + 1 = 118992 nên ta có:

(7^3)^673 - 1 = 342 * 118992

Vì 342 chia hết cho 57 nên (7^3)^673 - 1 chia hết cho 57.

Do đó S = (7^2021 - 1)/6 chia hết cho 57.

 

26 tháng 7 2023

57 hay 56 vậy bạn?