1+3+5+7+...+2021 Tính Tổng
Giúp mình nhé! Thank you 💗
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(1-2)-(3-4)+(5-6)-(7-8)+...+(2021-2022)-2023
=(-1)-(-1)+(-1)-...+(-1)-2023
=0-2023
=-2023
a)5.(x+3)-2.(x+4)-(x-2)=17
=> 5x + 15 - 2x - 8 - x + 2 = 17
=> 2x + 9 = 17
=> 2x = 8
=> x = 4
b) S=1.3+2.4+3.5+...+48.50+49.51
= 1(2 + 1) + 2(3 + 1) + 3(4 + 1) + ... + 48(49 + 1) + 49(50 + 1)
= 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + ... + 48 + 48.49 + 49 + 49.50
= (1 + 2 + 3 + ... + 49) + (1.2 + 2.3 + 3.4 + ... + 49.50)
đặt A = 1 + 2 + 3 + ... + 49 = (1 + 49).49 : 2 = 1225
đặt B = 1.2 + 2.3 + 3.4 + ... + 49.50
3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 49.50.3
3B = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50
3B = 49.50.51
B = 49.50.51 : 3 = 41650
A + B = S = 41650 + 1225 = 42875
\(A=7^1+7^3+7^5+7^7+...+7^{1997}+7^{1999}\)
\(A=\left(7+7^3\right)+\left(7^5+7^7\right)+...+\left(7^{1997}+7^{1999}\right)\)
\(A=\left(7+7^3\right)+\left[\left(7+7^3\right)\cdot7^4\right]+...+\left[\left(7+7^3\right)\cdot7^{1996}\right]\)
\(A=\left(7+7^3\right)\cdot\left(1+7^4+...+7^{1996}\right)\)
\(A=350\cdot\left(1+7^4+...+7^{1996}\right)\)
Vì \(350⋮35\)nên \(A⋮35\left(đpcm\right)\)
\(A=3+3^2+3^3+...+3^{20}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(A=3\left(1+3\right)+3^3\left(3+1\right)+...+3^{19}\left(1+3\right)\)
\(\Rightarrow A=4\left(3+3^3+...+3^{19}\right)\)
\(\Rightarrow A⋮4\)
bn lấy máy tính cộng lại r trừ cho 3 ra âm thì bé hơn dương thì lớn hơn hok tốt nha xin lỗi vì mik ko có máy tính ở đây
A, 11/4 x 2/5 : 3/7
= 11/10 : 3/7
= 77/30
B, 4/9 : 2/9 x 6/7
= 2 x 6/7
= 12/7
SSH=\(\dfrac{2021-1}{2}+1=1011\)
Tổng là: \(\dfrac{\left(2021+1\right)\times1011}{2}=1022121\)
Dãy số trên có số số hạng là:
$(2021-1):2+1=102$(số hạng)
Tổng dãy số trên là:
$(2021+1)\times102:2=103122$