K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

Vì VP có bậc là 3 => VT cũng sẽ có bậc 3

\(7+4x-2x^2\) có bậc 2 => A sẽ có bậc 1

Đặt A = \(mx+n\)

=> VT = \(\left(mx+n\right)\left(7+4x-2x^2\right)\)

= \(7mx+4mx^2-2mx^3+7n+4nx-2nx^2\)

= \(-2mx^3+x^2\left(4m-2n\right)+x\left(7m+4n\right)+7n\)

Để VT=VP<=> \(\left\{{}\begin{matrix}-2mx^3=-2x^3\\x^2\left(4m-2n\right)=bx^2\\x\left(7m+4n\right)=ax\\7n=-7\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}-2m=-2\\4m-2n=b\\7m+4n=a\\n=-1\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}m=1\\4.1-2.\left(-1\right)=b\\7.1+4\left(-1\right)=a\\n=-1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m=1\\n=-1\\b=6\\a=3\end{matrix}\right.\)

=> Đa thức A = \(x-1\) và a = 3 ; b = 6

20 tháng 3 2017

a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)

Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:

\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)

<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5

20 tháng 3 2017

lười quá ~~

bài 1

vì đa thức bị chia bậc 2, đa thức chia bậc nhất

=> đa thức thương sẽ có dạng bx+c

theo đề ta có

\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)

vậy a = -5

bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé

29 tháng 11 2019

Đa thức \(ax^3+bx^2+4\)chia cho đa thức \(x^2-1\)dư 2x + 5

Nên \(ax^3+bx^2+4-2x-5⋮x^2-1\)

hay \(ax^3+bx^2-2x-1⋮x^2-1\)

Áp dụng định lý Bezout:

1 và -1 là hai nghiệm của đa thức \(x^2-1\)nên \(\hept{\begin{cases}a+b-2-1=0\\-a+b+2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=3\\a-b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)

Vậy a = 2 ; b = 1

1 tháng 10 2019

â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12

Để là phép chia hết thì số dư =0

Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12

b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x

số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36

c) Tương tự (x2-1)4x+(a+4)x+b

số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3

20 tháng 12 2020

Ta có (x3 + ax2 + bx + 3) : (x2 - 2x - 1) = x + a - 2 dư x(b - 2a + 5) + a + 1

Để  (x3 + ax2 + bx + 3) \(⋮\) (x2 - 2x - 1)

=> x(b - 2a + 5) + a + 1 = 0 \(\forall x\)

=> \(\hept{\begin{cases}b-2a+5=0\\a+1=0\end{cases}}\Rightarrow\hept{\begin{cases}b-2a=-5\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}b=-7\\a=-1\end{cases}}\)