Cho tam giác ABC cân tại A. Trên tia đối của AC lấy D,trên tia đối của AC lấy E sao cho AD=AE. Tứ giác DECB là hình gì? Vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn thông cảm nha. Mình vẽ hình không đẹp lắm)
Ta có \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)(\(\Delta ABC\)cân tại A) (1)
và AD = AE (gt)
nên \(\Delta ADE\)cân tại A
=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\)(2)
Từ (1) và (2)
=> \(\widehat{ABC}=\widehat{AED}\)ở vị trí đồng vị (3)
=> BC // ED
nên tứ giác DEBC là hình thang (*)
Chứng minh tương tự, ta cũng có: \(\widehat{ACB}=\widehat{ADE}\)(4)
và \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A) (5)
Từ (3), (4) và (5) => \(\widehat{AED}=\widehat{ADE}\)(**)
Từ (*) và (**)
=> Tứ giác DEBC là hình thang cân
Đó sẽ là hình thang cân DECB.
Trong bài tập này có 2 điều bạn phải làm rõ được:
DE // BC và DC = BE.
Chúng ta sẽ cùng làm từng điều một:
- DE // BC:
Giả thiết cho tam giác ABC cân A => AC = AB.
- Xét 2 tam giác ADE và ACB bằng nhau theo trường hợp cgc
=> góc ADE = ACB => DE // BC.
học tốt nhé cậu
a: Xét ΔAED và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)
\(\widehat{EAD}=\widehat{CAB}\)
Do đó: ΔAED\(\sim\)ΔACB
Suy ra: \(\widehat{AED}=\widehat{ACB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà EC=BD
nên BEDC là hình thang cân
Xét tứ giác BCDE có
A là trung điểm của EC
A là trung điểm của BD
Do đó: BCDE là hình bình hành
mà \(\widehat{EDC}=90^0\)
nên BCDE là hình chữ nhật
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a: Xét ΔABC và ΔADE có
\(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)
\(\widehat{BAC}=\widehat{DAE}\)
Do đó: ΔABC\(\sim\)ΔADE
Suy ra: \(\widehat{ABC}=\widehat{ADE}\)
kham khảo nha
Câu hỏi của Tsumi Akochi - Toán lớp 8 | Học trực tuyến
vào thống kê hỏi đáp có màu xanh ở câu trả lời này ấn zô dố sẽ được
hc tốt
Đó sẽ là hình thang cân DECB.
Trong bài tập này có 2 điều bạn phải làm rõ được:
DE // BC và DC = BE.
Chúng ta sẽ cùng làm từng điều một:
- DE // BC:
Giả thiết cho tam giác ABC cân A => AC = AB.
- Xét 2 tam giác ADE và ACB bằng nhau theo trường hợp cgc
=> góc ADE = ACB => DE // BC.
Còn phần còn lại bạn tự làm