các bạn chứng minh giúp mình định lý ptoleme bằng cách của lớp 8 được không ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ cần dựa trên định lý Ta lét là được
Từ C kẻ đường thẳng song song với AB cắt AD, BE ở K và H
\(\Rightarrow\frac{AF}{FB}.\frac{BD}{CD}.\frac{CE}{EA}=\frac{AB}{CK}.\frac{AF}{FB}.\frac{CH}{AB}\)
\(\Rightarrow\frac{FB}{CH}.\frac{AB}{FB}.\frac{CH}{AB}=1\)
Chứng minh theo lớp 8 rồi nhé
Tu kehinh nhe
Vitamgiac ABCdong đáng với tam giác A'B'C' gocB=goc B' 1
Ma gocH=gocH' 2
Tu 1va 2 suy ra
Tam giac ABHdongdang voitam giacA'B'H'
suy ra AH/A'H'=AB/A'B'=k
Áp dụng bất đẳng thức về cạnh :
- Trong tam giác OAB : \(AB< OA+OB\left(1\right)\)
- Trong tam giác OCD : \(CD< OC+OD\left(2\right)\)
Cộng (1) và (2) theo vế được : \(AB+CD< OA+OB+OC+OD=AC+BD\)
\(\Rightarrow AB+CD< AC+BD\left(\text{*}\right)\)
Tương tự, ta áp dụng bất đẳng thức về cạnh trong các tam giác ABC , ACD , ABD , BDC được :
- \(\hept{\begin{cases}AC< AB+BC\left(3\right)\\AC< AD+DC\left(4\right)\end{cases}}\)
- \(\hept{\begin{cases}BD< AD+AB\left(5\right)\\BD< CD+BC\left(6\right)\end{cases}}\)
Cộng (3) , (4) , (5) , (6) theo vế được :
\(2\left(AC+BD\right)< 2\left(AB+BC+CD+AD\right)\Rightarrow AC+BD< AB+BC+CD+AD\left(\text{*}\text{*}\right)\)
Từ (*) và (**) ta được điều phải chứng minh.
trên tia đối của tia MA lấy điểm D sao cho MD = MA
xét \(\Delta AMB\)và \(\Delta DMC\)có :
MB = MC ( gt )
\(\widehat{M_1}=\widehat{M_2}\)( hai góc đối đỉnh )
MA = MD ( do cách vẽ )
Suy ra : \(\Delta AMB\)= \(\Delta DMC\)( c.g.c )
Suy ra : AB = AC và \(\widehat{A_1}=\widehat{D}\) \(\Rightarrow\)AB // CD ( vì có cặp góc sole trong bằng nhau )
vì \(AC\perp AB\)( gt ) nên AC \(\perp\)CD ( quan hệ giữa tính song song và vuông góc )
Xét \(\Delta ABC\)và \(\Delta CDA\)có :
AB = CD ( chứng minh trên )
\(\widehat{A}=\widehat{C}=90^o\)
AC ( chung )
Vậy \(\Delta ABC\)= \(\Delta CDA\)( c.g.c ) suy ra BC = AD
vì \(AM=MD=\frac{AD}{2}\)nên \(AM=\frac{BC}{2}\)
Cách này ko phải lớp 8