Viết biểu thức \({x^3} + 9{x^2}y + 27x{y^2} + 27{y^3}\) dưới dạng lập phương của một tổng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
\(\begin{array}{l}8{x^3} - 36{x^2}y + 54x{y^2} - 27{y^3}\\ = {\left( {2x} \right)^3} - 3.{\left( {2x} \right)^2}.3y + 3.\left( {2x} \right).{\left( {3y} \right)^2} - {\left( {3y} \right)^3}\\ = {\left( {2x - 3y} \right)^3}\end{array}\)
\(8{{\rm{x}}^3} - 36{{\rm{x}}^2}y + 54{\rm{x}}{y^2} - 27{y^3} = {\left( {2{\rm{x}}} \right)^3} - 3.\left( {2{\rm{x}}} \right).3y + 3.2{\rm{x}}.{\left( {3y} \right)^2} - {\left( {3y} \right)^3} = {\left( {2{\rm{x}} - 3y} \right)^3}\)
a) \(27 + 54x + 36{x^2} + 8{x^3} = {3^3} + {3.3^2}.2x + 3.3.{\left( {2x} \right)^2} + {\left( {2x} \right)^3} = {\left( {3 + 2x} \right)^3}\)
b) \(64{x^3} - 144{x^2}y + 108x{y^2} - 27{y^3} = {\left( {4x} \right)^3} - 3.{\left( {4x} \right)^2}.3y + 3.4x.{\left( {3y} \right)^2} - {\left( {3y} \right)^3} = {\left( {4x - 3y} \right)^3}\)
Bài 1:
\(a,27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3.\left(3x\right)^2.1+3.3x.1^2+1^3\)
\(=\left(3x+1\right)^3\)
\(b,x^3+3\sqrt{2}x^2y+6xy^2+2\sqrt{2}y^3\)
\(=x^3+3.x^2.\sqrt{2}y+3.x.\left(\sqrt{2}y\right)^2+\left(\sqrt{2}y\right)^3\)
\(=\left(x+\sqrt{2}y\right)^3\)
Bài 2:
\(a,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(b,\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3-4x^2+4x+x-1=0\)
\(\Leftrightarrow-x^2+8x=0\)
\(\Leftrightarrow-x\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
1)
a) = (3x+1)3
b) (x+\(\sqrt{2}\) )3
2)
a)\(x^3+9x^2+27x+27=0\\ \left(x+3\right)^3=0\\ =>x=-3\)
b) Bài cuối bạn tự làm nhé! Mình mắc học bài
# Chúc bạn học tốt !
(x + y)3 = x3 + 3x2y + 3xy2 + y3
(x - y)3 = x3 - 3x2y + 3xy2 - y3
Chúc bạn học tốt
\(27x^3-9x^2+x-\frac{1}{27}=\left(3x\right)^3-3.3^2.\frac{1}{3}x^2+3.3.\left(\frac{1}{3}\right)^2x-\left(\frac{1}{3}\right)^2\)
\(=\left(3x-\frac{1}{3}\right)^3\)
\(\begin{array}{l}{x^3} + 9{x^2}y + 27x{y^2} + 27{y^3}\\ = {x^3} + 3.{x^2}.3y + 3.x.{\left( {3y} \right)^2} + {\left( {3y} \right)^3}\\ = {\left( {x + 3y} \right)^3}\end{array}\)