So sánh \(\frac{a}{b}\)( b > 0 ) và \(\frac{a+n}{b+n}\)
\(\left(n\in Nsao\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1 :
Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)
\(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)
Cộng theo từng vế ( 1) và ( 2 ) ta được :
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)
VẬY \(A>B\)
CÁCH 2
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)
\(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)
VẬY A>B
Chúc bạn học tốt ( -_- )
Xét a>b, ta đặt a=b+m=>a+n=b+m+n
vậy: a/b=(b+m)/b= 1+m/b.....(3)
(a+n)/(b+n)=(b+m+n)/(b+n)=(b+n+m)/(b+n)...
So sánh (3) và (4) cho ta a/b<(a+n)/(b+n)
Nếu a là nguyên âm thì bạn có trừong hợp ngược lại
Nếu a=0 thì a/b=0 khi đó (a+1)/(b+1)=1/(b+1) >0=a/b
Tuơng tự khi a=0 thì (a+n)/b+n)=n/(b+n)>a/b
* Nếu \(\frac{a}{b}>1\) thì \(a>b\)\(\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\)
* Nếu \(\frac{a}{b}=1\) thì \(a=b\)\(\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}=1\)
* Nếu \(\frac{a}{b}< 1\) thì \(a< b\)\(\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
+ Nếu a < b
=> a.n < b.n
=> a.n + a.b < b.n + a.b
=> a.(b + n) < b.(a + n)
=> a/b < a+n/b+n
Lm tương tự vs 2 trường hợp còn lại là a = b là a > b
Nếu như a cũng lớn hơn 0:
Thì a phần b sẽ nhỏ hơn a cộng n phần b cộng n.
Em có thể chứng minh bằng cách quy đồng tử.
Với a bé hơn không:
Số có giá trị tuyệt đối lớn hơn số kia giống phần trên sẽ bé hơn số có giá trị tuyệt đối nhỏ hơn.
Chúc em học tốt^^
a) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} > 1\).
b) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} < 2\).
chứng minh : \(\frac{a}{n\times\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n;a\in Nsao\right)\)
xét \(\frac{a}{n.\left(n+a\right)}=\frac{\left(n+a\right)-n}{n.\left(n+a\right)}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
vậy ............................
Ta có: \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)\(\Leftrightarrow ab+an< ab+bn\)\(\Leftrightarrow a< b\) (vì \(n>0\)).
Vậy \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a< b.\)
Tương tự
\(\dfrac{a}{b}>\dfrac{a+n}{b+n}\Leftrightarrow a>b\) ;
\(\dfrac{a}{b}=\dfrac{a+n}{b+n}\Leftrightarrow a=b\).
Chứng minh rằng:
a) \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n,a\in Nsao\right)\)
ta có \(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
vậy \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
Tìm trước khi hỏi , google-sama chưa tính phí mà !
Câu hỏi của phạm minh anh - Toán lớp 7 - Học toán với OnlineMath
\(\frac{a}{b}\)= \(\frac{a\left(a+n\right)}{b\left(b+n\right)}\) = \(\frac{ab+an}{b^2+bn}\)
\(\frac{a+n}{b+n}\)= \(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)= \(\frac{ab+nb}{b^2+bn}\)
Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)< \(\frac{a+n}{b+n}\)
Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)> \(\frac{a+n}{b+n}\)
Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)= \(\frac{a+n}{b+n}\)