K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Ta có: \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)\(\Leftrightarrow ab+an< ab+bn\)\(\Leftrightarrow a< b\) (vì \(n>0\)).
Vậy \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a< b.\)
Tương tự
\(\dfrac{a}{b}>\dfrac{a+n}{b+n}\Leftrightarrow a>b\) ;
\(\dfrac{a}{b}=\dfrac{a+n}{b+n}\Leftrightarrow a=b\).

22 tháng 6 2019

Ta có: ab<a+nb+n⇔a(b+n)<b(a+n)ab<a+nb+n⇔a(b+n)<b(a+n)⇔ab+an<ab+bn⇔ab+an<ab+bn⇔a<b⇔a<b (vì n>0n>0).
Vậy ab<a+nb+n⇔a<b.ab<a+nb+n⇔a<b.
Tương tự
ab>a+nb+n⇔a>bab>a+nb+n⇔a>b ;
ab=a+nb+n⇔a=bab=a+nb+n⇔a=b.

9 tháng 6 2017

a) \(3^3\)

b)\(2^8\)

c) \(2^7\)

d) \(3^1\)

22 tháng 6 2017

a) 9.33.\(\dfrac{1}{81}\) .32 = 32. 33.\(\dfrac{1}{3^4}\) . 32 = 33

b) 4. 25: \(\) (23.\(\dfrac{1}{16}\))= 22. 25: 23. \(\dfrac{1}{2^4}\) = 27: \(\dfrac{1}{2}\) = 27. 2= 28

c) 32. 25. \(\left(\dfrac{2}{3}\right)^2\) = 32. 25. \(\dfrac{2^2}{3^2}\) = 25. 22 = 27

d) \(\left(\dfrac{1}{3}\right)^2\) .\(\dfrac{1}{3}\) . 92 = \(\dfrac{1}{9}.\dfrac{1}{3}\). 92 = \(\dfrac{9}{3}\) = 31

14 tháng 12 2017

1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)

Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)

Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)

Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)

Tại \(n-1=1\Leftrightarrow n=1+1=2\)

Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)

14 tháng 12 2017

2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)

Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)

Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)

Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)

Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)

a: \(=\left(-\dfrac{5}{7}\right)^{n-n}=\left(-\dfrac{5}{7}\right)^0=1\)

b: \(=\left(-\dfrac{1}{2}\right)^{2n-n}=\left(-\dfrac{1}{2}\right)^n\)

12 tháng 1 2018

b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\)\(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)\(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)

\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)\(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)

\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)\(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)

\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)

\(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)

\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)

+) Vì a,b,c đôi một khác 0

\(\Rightarrow a+b+c=0\)

\(\rightarrow a+b=\left(-c\right)\)

\(\rightarrow a+c=\left(-b\right)\)

\(\rightarrow b+c=\left(-a\right)\)

+) Ta có:

\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)

\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)

\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)

\(=\left(-1\right)\)

9 tháng 6 2017

Tìm trước khi hỏi , google-sama chưa tính phí mà !

Câu hỏi của phạm minh anh - Toán lớp 7 - Học toán với OnlineMath

9 tháng 6 2017

\(\frac{a}{b}\)\(\frac{a\left(a+n\right)}{b\left(b+n\right)}\) = \(\frac{ab+an}{b^2+bn}\)

\(\frac{a+n}{b+n}\)\(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)\(\frac{ab+nb}{b^2+bn}\)

Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

27 tháng 9 2017

a)=>x+1<0=>x<-1

x-2 =<0=> x=<2

b)x-2>0=>x>2

x+2/3>=0=>x>=-2/3

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{n-1}-1\right)\left(\frac{1}{n}-1\right)\)

\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}...\frac{-(n-2)}{n-1}.\frac{-(n-1)}{n}\)

\(=\frac{(-1)(-2)(-3)...[-(n-2)][-(n-1)]}{2.3.4...(n-1)n}\)

\(=\frac{(-1)^{n-1}(1.2.3....(n-2)(n-1))}{2.3.4...(n-1)n}=(-1)^{n-1}.\frac{1}{n}\)

b) \(B=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{n^2}-1\right)\)

\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.....\frac{1-n^2}{n^2}\)

\(=\frac{(-1)(2^2-1)}{2^2}.\frac{(-1)(3^2-1)}{3^2}....\frac{(-1)(n^2-1)}{n^2}\)

\(=(-1)^{n-1}.\frac{(2^2-1)(3^2-1)...(n^2-1)}{2^2.3^2....n^2}\)

\(=(-1)^{n-1}.\frac{(2-1)(2+1)(3-1)(3+1)...(n-1)(n+1)}{2^2.3^2....n^2}\)

\(=(-1)^{n-1}.\frac{(2-1)(3-1)...(n-1)}{2.3...n}.\frac{(2+1)(3+1)...(n+1)}{2.3...n}\)

\(=(-1)^{n-1}.\frac{1.2.3...(n-1)}{2.3...n}.\frac{3.4...(n+1)}{2.3.4...n}\)

\(=(-1)^{n-1}.\frac{1}{n}.\frac{n+1}{2}=(-1)^{n-1}.\frac{n+1}{2n}\)

21 tháng 2 2018

b/
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
* \(\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b+c=3a\\2c+a=3b\\2a+b=3c\end{matrix}\right.\)
+)\(\Rightarrow\left\{{}\begin{matrix}c=3a-2b\\a=3b-2c\\b=3c-2a\end{matrix}\right.\)
\(\Rightarrow\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)=abc\left(1\right)\)
+) \(\Rightarrow\left\{{}\begin{matrix}2b=3c-a\\2c=3b-a\\2a=3c-b\end{matrix}\right.\)
\(\Rightarrow\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)=8abc\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{abc}{8abc}=\dfrac{1}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)