K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2023

|2x- x| = -2x
-> Có 2 trường hợp xảy ra:
TH1: 2x- x = -2x
2x= -x
2x2 + x = 0
x(2x + 1) = 0
=> Có 2 trường hợp  => x thuộc {0; -1/2}
TH2: -(2x- x) = -2x
-2x+ x = -2x
-2x+ 3x = 0
x(-2x + 3) = 0
=> Có 2 trường hợp => x thuộc {0; 3/2}
KL: x = 0, 3/2, -1/2

7 tháng 7 2016

pt: \(\left(1-2x\right)\left(x+3\right)\left(x^2+2\right)=0\)\(\Leftrightarrow\hept{\begin{cases}1-2x=0\\x+3=0\\x^2+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=-3\\x^2=-2\left(loại\right)\end{cases}}\)

vậy: \(x=\frac{1}{2}\),\(x=-3\)

7 tháng 7 2016

cảm ơn bạn rất nhiều ạ

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Em cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

21 tháng 10 2021

ô noooooooooooooooooooooo

18 tháng 6 2016

cái j zị

18 tháng 6 2016

đề bị sao r đó

x(4x - 1)2(2x - 1)= 3/2

<=>(16x2 - 8x + 1)( 2x2 - x)= 3/2

<=>(16x2 - 8x + 1)( 16x2 - 8x)= 12

Đặt 16x2 - 8x= y, ta có phương trình:

(y + 1) . y= 12

<=>y2 + y - 12=0

<=>y2 + 4x - 3x - 12=0

<=>y(y + 4) - 3(x + 4)=0

<=>(y + 4)(y - 3)=0

Đến đây tự làm tiếp nha.

25 tháng 4 2019

x(4x-1)^2(2x+1)=3/2

<=>8x(4x-1)^2(2x-1)=8.3/2

<=>(16x^2-8x+1)(16x^2-8x)=12     (1)

đặt 16x^2-8x=y  ta có

 (y+1)y=12

<=>y^2+y-12=0

<=>y^2-3y+4y-12=0

<=>y(y-3)+4(y-3)=0

<=>(y-3)(y+4)=0

thay y=x^2+8x rồi giải phương trình

#Lười gõ phần sau

x(4x - 1)2(2x - 1)= 3/2

<=>(2x2 - x)(16x2 - 8x +1)= 3/2

<=>(16x2 - 8x)(16x2 - 8x + 1)= 12

Đặt 16x2 - 8x= y, ta được

y(y+ 1)=12

<=> y2 + y - 12=0

<=> y2 - 3y + 4y - 12=0

<=> y(y - 3) + 4(y - 3)=0

<=>(y - 3)(y + 4)=0

Đến đây tự làm nha

Nếu chơi lmht thì kb vs mk

25 tháng 4 2019

Tên nick bạn!

a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)

=>8x+4-18x+3=2x+1

=>-10x+7=2x+1

=>-12x=-6

hay x=1/2

b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)

=>5x-21=6x

=>-x=21

hay x=-21

a: Khi m=1 thì phương trình sẽ là x^2-2x-1=0

=>x^2-2x+1-2=0

=>(x-1)^2=2

=>\(x=\pm\sqrt{2}+1\)

b: Δ=(-2)^2-4*1*(-m^2)=4m^2+4>=4>0

=>Phương trình luôn có hai nghiệm phân biệt

\(\Leftrightarrow\left(x+3\right)\sqrt{2x^2+1}-\left(x+3\right)=x^2\)

=>\(\left(x+3\right)\cdot\left(\sqrt{2x^2+1}-1\right)=x^2\)

=>\(\left(x+3\right)\cdot\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}-x^2=0\)

=>\(x^2\left(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}-1\right)=0\)

=>x^2=0 hoặc \(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}=1\)

=>\(\left[{}\begin{matrix}x=0\\\sqrt{2x^2+1}+1=2x+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+1=\left(2x+5\right)^2;x>=-\dfrac{5}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\4x^2+20x+25-2x^2-1=0;x>=-\dfrac{5}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}2x^2+20x+24=0\\x>=-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5+\sqrt{13}\end{matrix}\right.\)

=>Phương trình này có 2 nghiệm

31 tháng 8 2023

Tks bạn ạ