GIẢI PHƯƠNG TRÌNH [giúp em vớiT.T]
|2x ^ 2 - x| = - 2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt: \(\left(1-2x\right)\left(x+3\right)\left(x^2+2\right)=0\)\(\Leftrightarrow\hept{\begin{cases}1-2x=0\\x+3=0\\x^2+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=-3\\x^2=-2\left(loại\right)\end{cases}}\)
vậy: \(x=\frac{1}{2}\),\(x=-3\)
x(4x - 1)2(2x - 1)= 3/2
<=>(16x2 - 8x + 1)( 2x2 - x)= 3/2
<=>(16x2 - 8x + 1)( 16x2 - 8x)= 12
Đặt 16x2 - 8x= y, ta có phương trình:
(y + 1) . y= 12
<=>y2 + y - 12=0
<=>y2 + 4x - 3x - 12=0
<=>y(y + 4) - 3(x + 4)=0
<=>(y + 4)(y - 3)=0
Đến đây tự làm tiếp nha.
x(4x-1)^2(2x+1)=3/2
<=>8x(4x-1)^2(2x-1)=8.3/2
<=>(16x^2-8x+1)(16x^2-8x)=12 (1)
đặt 16x^2-8x=y ta có
(y+1)y=12
<=>y^2+y-12=0
<=>y^2-3y+4y-12=0
<=>y(y-3)+4(y-3)=0
<=>(y-3)(y+4)=0
thay y=x^2+8x rồi giải phương trình
#Lười gõ phần sau
x(4x - 1)2(2x - 1)= 3/2
<=>(2x2 - x)(16x2 - 8x +1)= 3/2
<=>(16x2 - 8x)(16x2 - 8x + 1)= 12
Đặt 16x2 - 8x= y, ta được
y(y+ 1)=12
<=> y2 + y - 12=0
<=> y2 - 3y + 4y - 12=0
<=> y(y - 3) + 4(y - 3)=0
<=>(y - 3)(y + 4)=0
Đến đây tự làm nha
Nếu chơi lmht thì kb vs mk
a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)
=>8x+4-18x+3=2x+1
=>-10x+7=2x+1
=>-12x=-6
hay x=1/2
b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)
=>5x-21=6x
=>-x=21
hay x=-21
a: Khi m=1 thì phương trình sẽ là x^2-2x-1=0
=>x^2-2x+1-2=0
=>(x-1)^2=2
=>\(x=\pm\sqrt{2}+1\)
b: Δ=(-2)^2-4*1*(-m^2)=4m^2+4>=4>0
=>Phương trình luôn có hai nghiệm phân biệt
\(\Leftrightarrow\left(x+3\right)\sqrt{2x^2+1}-\left(x+3\right)=x^2\)
=>\(\left(x+3\right)\cdot\left(\sqrt{2x^2+1}-1\right)=x^2\)
=>\(\left(x+3\right)\cdot\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}-x^2=0\)
=>\(x^2\left(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}-1\right)=0\)
=>x^2=0 hoặc \(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}=1\)
=>\(\left[{}\begin{matrix}x=0\\\sqrt{2x^2+1}+1=2x+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+1=\left(2x+5\right)^2;x>=-\dfrac{5}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\4x^2+20x+25-2x^2-1=0;x>=-\dfrac{5}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}2x^2+20x+24=0\\x>=-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5+\sqrt{13}\end{matrix}\right.\)
=>Phương trình này có 2 nghiệm
|2x2 - x| = -2x
-> Có 2 trường hợp xảy ra:
TH1: 2x2 - x = -2x
2x2 = -x
2x2 + x = 0
x(2x + 1) = 0
=> Có 2 trường hợp => x thuộc {0; -1/2}
TH2: -(2x2 - x) = -2x
-2x2 + x = -2x
-2x2 + 3x = 0
x(-2x + 3) = 0
=> Có 2 trường hợp => x thuộc {0; 3/2}
KL: x = 0, 3/2, -1/2