So nao? 0/101 , 1/101 , 4/101 , 9/101 , ?Và tại sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=f(0)+(f(1/101)+f(100/101))+(f(2/101)+f(99/101))+...+f(1)
A=f(0)+50f(1)+f(1)
A=f(0)+51f(1)
A=4^0/4^0+2+51(4^1/4^1+2)
A=1/3+34
A=103/3
Mik ko bik đúng ko nữa
khoảng cách các phân số đó với 1 là:
1 - 99/100 = 1/100,
1 - 100/101 = 1/101,
1 - 101/102 = 1/102
khoảng cách càng nhỏ thì phân số càng lớn
ta so sánh các khoảng cách:
1/100 > 1/101 > 1/102
Ta có:
\(1-\frac{99}{100}=\frac{1}{100}\)
\(1-\frac{100}{101}=\frac{1}{101}\)
\(1-\frac{101}{102}=\frac{1}{102}\)
Ở tiểu học ta đã được học cách so sánh các phân số trong đó có: Nếu phân số có cùng tử số thì phân số nào có mẫu bé hơn thì lớn hơn và ngược lại. Vậy
99/100>100/101>101/102
Ta có: 100+101/101+102
= 100/101+102 + 101/101+102
Vì 100/101>100/101+102
101/102 > 101/101+102
=>100/101+101/102 > 100+101/101+102
M=101^102+1/101^103+1
M=101^102+1/101^102*101+1
M=1/101+2
M=1/102
N=101^103+1/101^104+1
N=101^103+1/101^103*101+1
N=1/101+1
N=1/102
Vậy N=M
\(N=\frac{101^{103}+1}{101^{104}+1}<\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}\)
=> N < M
bạn bất công với tớ quá
1/101=1/101+0/191
4/101=1/101+3/101
9/101=4/101+5/101
=> số tiếp theo là:9/101+7/101=16/101