K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2015

M=101^102+1/101^103+1

M=101^102+1/101^102*101+1

M=1/101+2

M=1/102

 

N=101^103+1/101^104+1

N=101^103+1/101^103*101+1

N=1/101+1

N=1/102

 

Vậy N=M

17 tháng 3 2016

ban làm đề hsg lớp 6 huyện nông cống đúng k.

25 tháng 9 2016

\(101\cdot M=\frac{101^{103}+101}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)

\(101\cdot N=\frac{101^{104}+101}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)

mà 101^103+1<101^101+1         =>\(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\)

nên M>N

 ta có: M=10^2020 +1 / 10^2019 +1

=> M/10= 10^2020 +1 / 10( 10^2019 +1 )

= 10^2020+1/ 10^2020 +10

=>  10/A=  10^2020 +10/10^2020 +1

=(10^2020 +1) +9/ 10^2020+1

=10^2020+1 /10^2020+1 + 9/10^2020+1

=1+ 9/10^2020+1

ta lại có: N=10^2021 +1/10^2020 +1

=> N/10= 10^2021+1/ 10(10^2020+1)

= 10^2021+1 / 10^2021+10

=> 10/N=10^2021+10 / 10^2021+1

=(10^2021+1) +9/10^2021+1

=10^2021+1/10^2021+1 +9/10^2021+1

=1+ 9/10^2021+1

ta thấy: 10/M>10N

=>M<N

\(M=\dfrac{10^{2020}+1}{10^{2019}+1}=1-\dfrac{9}{10^{2019}+1}\)

\(N=\dfrac{10^{2021}+1}{10^{2020}+1}=1-\dfrac{9}{10^{2020}+1}\)

Ta có: \(10^{2019}+1< 10^{2020}+1\)

\(\Leftrightarrow\dfrac{9}{10^{2019}+1}>\dfrac{9}{10^{2020}+1}\)

\(\Leftrightarrow-\dfrac{9}{10^{2019}+1}< -\dfrac{9}{10^{2020}+1}\)

\(\Leftrightarrow M< N\)

9 tháng 5 2021

Giải:

a)Ta có:

C=1957/2007=1957+50-50/2007

                      =2007-50/2007

                      =2007/2007-50/2007

                      =1-50/2007

D=1935/1985=1935+50-50/1985

                      =1985-50/1985

                      =1985/1985-50/1985

                      =1-50/1985

Vì 50/2007<50/1985 nên -50/2007>-50/1985

⇒C>D

b)Ta có:

A=20162016+2/20162016-1

A=20162016-1+3/20162016-1

A=20162016-1/20162016-1+3/20162016-1

A=1+3/20162016-1

Tương tự: B=20162016/20162016-3

                 B=1+3/20162016-3

Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3

⇒A<B

Chúc bạn học tốt!

 

 

Làm tiếp:

c)Ta có:

M=102018+1/102019+1

10M=10.(102018+1)/202019+1

10M=102019+10/102019+1

10M=102019+1+9/102019+1

10M=102019+1/102019+1 + 9/102019+1

10M=1+9/102019+1

Tương tự:

N=102019+1/102020+1

10N=1+9/102020+1

Vì 9/102019+1>9/102020+1 nên 10M>10N

⇒M>N

Chúc bạn học tốt!

3 tháng 4 2016

\(N=\frac{101^{103}+1}{101^{104}+1}<\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}\)

=> N < M

3 tháng 4 2016

đinh đức hùng cả cách làm đi bạn

23 tháng 7 2017

Ta có:

\(M=\frac{101^{102}+1}{101^{103}+1}\)

\(101M=\frac{101^{103}+1+100}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)

Ta lại có:

\(N=\frac{101^{103}+1}{101^{104}+1}\)

\(101N=\frac{101^{104}+1+100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)

Vì \(\frac{100}{101^{104}+1}< \frac{100}{101^{103}+1}\Rightarrow101N< 101M\Rightarrow N< M\)

29 tháng 5 2020

có một số khi nhân số bé lên 10 lần thì số đó là

30 tháng 1 2020

Ta có : \(101M=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+100+1}{101^{103}+1}=1+\frac{100}{101^{103}+1};\)

\(101N=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+1+100}{101^{104}+1}=1\frac{100}{101^{104}+1}\)

Vì \(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\Rightarrow1+\frac{100}{101^{103}+1}>1+\frac{100}{101^{104}+1}\Rightarrow101M>101N\)

=> M > N

25 tháng 3 2022

M>N

25 tháng 3 2022

Tham khảo:

https://hoc247.net/hoi-dap/toan-6/so-sanh-m-101-102-1-101-103-1-va-n-101-103-1-101-104-1--faq225210.html

19 tháng 3 2018

ta có bổ đề sau .với\(\frac{a}{b}>0\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Rightarrow N=\frac{101^{103}+1}{101^{104}+1}< \frac{101^{103}+1+100}{101^{104}+1+100}\)

mà \(\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}\)

\(=\frac{101\left(101^{102+1}\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)

vậy \(M>N\)

19 tháng 3 2018

Ta có: \(N=\frac{101^{103}+1}{101^{104}+1}< \frac{101^{103}+1+100}{101^{104}+1+100}\)

Mà: \(\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)

Ta có: \(N< \frac{101^{103}+1+100}{101^{104}+1+100};\frac{101^{103}+1+100}{101^{104}+1+100}=M\)

=>  N<M

=>