Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải Phương Trình:
\(\frac{x^3}{\sqrt{16-x^2}}+x^2-16=0\)
ĐK \(16-x^2>0\Leftrightarrow\left(4-x\right)\left(4+x\right)\Leftrightarrow-4< x< 4\)
Đặt \(t=\sqrt{16-x^2}\Rightarrow t^2=16-x^2\)phương trình trở thành:
\(\frac{x^3}{t}-t^2=0\Leftrightarrow x^3-t^3=0\Leftrightarrow x=t\)
\(\Leftrightarrow x=\sqrt{16-x^2}\Leftrightarrow\hept{\begin{cases}x>0\\x^2=16-x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x^2=8\end{cases}\Leftrightarrow}}x=2\sqrt{2}\)TMDK
ĐK \(16-x^2>0\Leftrightarrow\left(4-x\right)\left(4+x\right)\Leftrightarrow-4< x< 4\)
Đặt \(t=\sqrt{16-x^2}\Rightarrow t^2=16-x^2\)phương trình trở thành:
\(\frac{x^3}{t}-t^2=0\Leftrightarrow x^3-t^3=0\Leftrightarrow x=t\)
\(\Leftrightarrow x=\sqrt{16-x^2}\Leftrightarrow\hept{\begin{cases}x>0\\x^2=16-x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x^2=8\end{cases}\Leftrightarrow}}x=2\sqrt{2}\)TMDK