K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

Chắc hiếm người tl câu của bạn lắm!!

-----

gọi parabol có đồ thì hàm số là : y = ax² + bx + c (P)
đường thẳng có đồ thị hàm số là : y = a'x + b' (d)
hoành độ giao điểm của (P) và (d) là nghiệm của pt : ax² + bx + c = a'x + b'
=> ax² + bx - a'x + c - b' = 0
=> ax² + (b - a')x + c - b' = 0
bạn tính ▲ của pt bậc 2 này ra
nếu ▲ < 0 => (d) không cắt (P)
nếu ▲ = 0 => (d) tiếp xúc (P)
nếu ▲ > 0 => (d) cắt (P) tại 2 điểm phân biệt

trích từ: </https://vn.answers.yahoo.com/question/index?qid=20081213224509AALYCsc>

-----------

a. Hoành độ giao điểm:

x^2 = 2x+m

=> m^2 - 2x - m = 0 (a = 1; b= -2; c= -m)

▲= b^2 - 4ac = 4 - 4*(-m) = 4m + 4

Để (d) tiếp xúc với (p) thì ▲= 0  -> 4m+4=0

-> m = -1

b. ▲= 0  nên phương trình có nghiệm kép: x1=x2= -b/a = 2

x= 2 -> y = x^2 = 2^2 =4

Vậy tọa độ tiếp điểm là A(2;4)

2 tháng 6 2017

Bạn ơi mình có nhầm lẫn xíu nhé ở câu b là x1=x1= -b/2a = 2/2 = 1

x=1 => y=x^2= 1^2 = 1

Vậy tọa độ tiếp điểm là A(1;1)

Quên công thức :) Sorry

21 tháng 1 2021

a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)

\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

21 tháng 1 2021

Còn phần b,c,d,e nx bn C:

4 tháng 5 2021

b, \(d\left(I;\Delta\right)=R\Leftrightarrow\dfrac{\left|-2+6+m\right|}{\sqrt{13}}=\sqrt{13}\)

\(\Rightarrow\left[{}\begin{matrix}m=9\\m=-17\end{matrix}\right.\)

 

4 tháng 5 2021

c, Dễ tìm được tọa độ A, B: \(\left\{{}\begin{matrix}A=\left(-3,-1\right)\\B=\left(2,0\right)\end{matrix}\right.\)

Phương trình tiếp tuyến tại A có dạng: \(\Delta_1:ax+by+3a+b=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I,\Delta_1\right)=\dfrac{\left|-a+2b+3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{13}\)

\(\Leftrightarrow\left(2a+3b\right)^2=13a^2+13b^2\)

\(\Leftrightarrow4a^2+9b^2+12ab=13a^2+13b^2\)

\(\Leftrightarrow9a^2+4b^2-12ab=0\)

\(\Leftrightarrow9a^2+4b^2-12ab=0\)

\(\Leftrightarrow3a=2b\)

\(\Rightarrow\Delta_1:2x+3y+9=0\)

Tương tự tiếp tuyến tại B: \(\Delta_2:3x-2y-6=0\)