cho sinα = \(\dfrac{1}{4}\)
tính B = \(\dfrac{3\cot\alpha-tan\alpha}{2tan\alpha+cot\alpha}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{\dfrac{sina}{cosa}+\dfrac{cosa}{sina}}{\dfrac{sina}{cosa}-\dfrac{3cosa}{sina}}=\dfrac{sin^2a+cos^2a}{sin^2a-3cos^2a}=\dfrac{1}{sin^2a-3\left(1-sin^2a\right)}=\dfrac{1}{4sin^2a-3}=\dfrac{1}{4.\left(\dfrac{1}{3}\right)^2-3}=...\)
\(sin\alpha=sin\left(180-\alpha\right)=\dfrac{3}{5}\Rightarrow cos\left(180-a\right)=\sqrt{1-sin^2\alpha}=\dfrac{4}{5}\Rightarrow cos\alpha=-\dfrac{4}{5}\)
\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{3}{5}}{-\dfrac{4}{5}}=-\dfrac{3}{4}\Rightarrow cot\alpha=-\dfrac{4}{3}\)
\(\Rightarrow A=\dfrac{3.\dfrac{3}{5}-\dfrac{4}{5}}{-\dfrac{3}{4}+\dfrac{4}{3}}=\dfrac{12}{7}\)
Lời giải:
a.
$\tan a+\cot a=2\Leftrightarrow \tan a+\frac{1}{\tan a}=2$
$\Leftrightarrow \frac{\tan ^2a+1}{\tan a}=2$
$\Leftrightarrow \tan ^2a-2\tan a+1=0$
$\Leftrightarrow (\tan a-1)^2=0\Rightarrow \tan a=1$
$\cot a=\frac{1}{\tan a}=1$
$1=\tan a=\frac{\cos a}{\sin a}\Rightarrow \cos a=\sin a$
Mà $\cos ^2a+\sin ^2a=1$
$\Rightarrow \cos a=\sin a=\pm \frac{1}{\sqrt{2}}$
b.
Vì $\sin a=\cos a=\pm \frac{1}{\sqrt{2}}$
$\Rightarrow \sin a\cos a=\frac{1}{2}$
$E=\frac{\sin a.\cos a}{\tan ^2a+\cot ^2a}=\frac{\frac{1}{2}}{1+1}=\frac{1}{4}$
\(0< a< 90^0\)
=>\(sina>0\)
\(sin^2a+cos^2a=1\)
=>\(sin^2a=1-\dfrac{9}{16}=\dfrac{7}{16}\)
=>\(sina=\dfrac{\sqrt{7}}{4}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)
\(cota=\dfrac{1}{tana}=\dfrac{3}{\sqrt{7}}\)
\(A=\dfrac{tana+3cota}{tana+cota}=\dfrac{\dfrac{\sqrt{7}}{3}+\dfrac{9}{\sqrt{7}}}{\dfrac{3}{\sqrt{7}}+\dfrac{\sqrt{7}}{3}}\)
\(=\dfrac{34}{3\sqrt{7}}:\dfrac{16}{3\sqrt{7}}=\dfrac{17}{8}\)
Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(tan\alpha< 0,cot\alpha< 0;cos\alpha< 0\).
Vì vậy: \(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{7}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{3}{4}:\dfrac{-\sqrt{7}}{4}=\dfrac{-3}{\sqrt{7}}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{-\sqrt{7}}{3}\).
\(A=\dfrac{2tan\alpha-3cot\alpha}{cos\alpha+tan\alpha}\)\(=\dfrac{2.\dfrac{-3}{\sqrt{7}}-3.\dfrac{-\sqrt{7}}{3}}{\dfrac{-\sqrt{7}}{4}+\dfrac{-3}{\sqrt{7}}}\)
\(=\dfrac{\dfrac{-6}{\sqrt{7}}+\sqrt{7}}{\dfrac{-7-12}{4\sqrt{7}}}\)\(=\dfrac{\dfrac{-6+7}{\sqrt{7}}.4\sqrt{7}}{-19}\)\(=\dfrac{\dfrac{1}{\sqrt{7}}.4\sqrt{7}}{-19}=-\dfrac{4}{19}\).
b) \(\dfrac{cos^2\alpha+cot^2\alpha}{tan\alpha-cot\alpha}=\dfrac{\left(-\dfrac{\sqrt{7}}{4}\right)^2+\left(\dfrac{-\sqrt{7}}{3}\right)^2}{\dfrac{-3}{\sqrt{7}}+\dfrac{\sqrt{7}}{3}}\)
\(=\dfrac{\dfrac{7}{16}+\dfrac{7}{9}}{\dfrac{-9+7}{3\sqrt{7}}}=\dfrac{\dfrac{175}{144}}{\dfrac{-2}{3\sqrt{7}}}=\dfrac{-175}{96\sqrt{7}}\).
a)
\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)
\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)
\(=2\sin ^2a\)
b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)
\(=1+\cos ^2a-1=\cos ^2a\)
\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)
c)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)
\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)
d)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)
\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)
f)
\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)
\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)
\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)
sin a=1/4
=>sin^2a=1/16
=>cos^2a=15/16
\(B=\dfrac{3\cdot\dfrac{cosa}{sina}-\dfrac{sina}{cosa}}{2\cdot\dfrac{sina}{cosa}+\dfrac{cosa}{sina}}\)
\(=\dfrac{3\cdot cosa^2a-sin^2a}{sina\cdot cosa}:\dfrac{2\cdot sin^2a+cos^2a}{sina\cdot cosa}\)
\(=\dfrac{3\cdot cos^2a-sin^2a}{2\cdot sin^2a+cos^2a}\)
\(=\dfrac{3\cdot\dfrac{15}{16}-\dfrac{1}{16}}{2\cdot\dfrac{1}{16}+\dfrac{15}{16}}=\dfrac{44}{17}\)