Tìm min của biểu thức \(x+y+\frac{6}{x}+\frac{24}{y}\)
biết x,y dương;x+y<=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bất đẳng thức đúng : \(ab\le\frac{\left(a+b\right)^2}{4};\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng ta được :
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\)
Ta có :
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)
\(\frac{3}{2xy}\ge\frac{3}{2.\frac{\left(x+y\right)^2}{4}}=\frac{3}{2.\frac{1}{4}}=6\)
\(\Rightarrow A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\ge4+6=10\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(A_{min}=10\) tại \(x=y=\frac{1}{2}\)
Từ giả thiết ta có :
\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)
\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)
Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Dấu " = " xảy ra khi và chỉ khi a = b = c
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)
Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)
Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)
P = 3x + 2y + 6/x + 8/y
P = (3x/2 + 6/x) + (3x/2 + 3y/2) + (y/2 + 8/y)
Ta có 3x/2 + 6/x >= 2.căn (3x/2.6/x) = 6
dấu = xảy ra khi 3x/2 = 6/x <=> x = 2
3x/2 + 3y/2 = 3/2.(x+y) >= 3/2.6 = 9
dấu = xảy ra khi x + y = 6
y/2 + 8/y >= 2.căn (y/2.8/y) = 4
Dấu = xảy ra khi y/2 = 8/y <=> y = 4
Vậy P >= 6 + 9 + 4 <=> P > = 19
Dấu = xảy ra khi x = 2 và y = 4
=> P min = 19
\(H=x^2+2y^2+\frac{1}{x}+\frac{24}{y}\)
\(\Leftrightarrow H=\left(\frac{1}{2}x^2+\frac{1}{2x}+\frac{1}{2x}\right)+\left(\frac{3}{2}y^2+\frac{12}{y}+\frac{12}{y}\right)+\left(\frac{1}{2}x^2+\frac{1}{2}\right)+\left(\frac{1}{2}y^2+2\right)-\frac{5}{2}\)
Áp dụng BĐT AM-GM ta có:
\(H\ge3.\sqrt[3]{\frac{1}{2}x^2.\frac{1}{2x}.\frac{1}{2x}}+3.\sqrt[3]{\frac{3}{2}y^2.\frac{12}{y}.\frac{12}{y}}+2.\sqrt{\frac{1}{2}x^2.\frac{1}{2}}+2.\sqrt{\frac{1}{2}y^2.2}-\frac{5}{2}=\frac{3}{2}+18+x+2y-\frac{5}{2}\ge22\)Dấu " = " xảy ra <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)( tự giải nhé )
KL:....