Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)
=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)
AD bđt cosi vs hai số dương có:
\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)
\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)
Có \(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))
=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)
<=> P \(\ge4.5\)
Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)
=> a=2,b=3
Vậy minP=4.5 <=>a=1,b=2
diều kiện x >= 0
P=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)
= \(\frac{x+2-x+\sqrt{x}-1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)
=\(\frac{\sqrt{x}+1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)=\(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
P=8/9
<=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
<=> \(3\sqrt{x}=2x-2\sqrt{x}+1\)
<=> \(2x-5\sqrt{x}+2=0\)
<=> \(\left[\begin{array}{nghiempt}x=4\\x=\frac{1}{4}\end{array}\right.\)
vậy x=4 hoặc x=1/4 thì p=8/9
a) \(P=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\left(ĐK:x\ge0;x\ne-1\right)\)
\(=\left[\frac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Để P=8/9
\(\Leftrightarrow\)\(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
\(\Leftrightarrow24\left(x-\sqrt{x}+1\right)=36\sqrt{x}\)
\(\Leftrightarrow24x-24\sqrt{x}+24-36\sqrt{x}=0\)
\(\Leftrightarrow24x-60\sqrt{x}+24=0\)
\(\Leftrightarrow12\left(2x-5\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x}\right)-\left(4\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)-2\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2\sqrt{x}-1=0\\\sqrt{x}-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=\frac{1}{2}\\\sqrt{x}=2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{array}\right.\)
2. Xem tại đây
1. \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)
\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)
\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)
1 ) có cách theo cosi đó
áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)
\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)
\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)
cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)
minP=3 khi x=y=z=1
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Ukm
It's very hard
l can't do it
Sorry!
3,
đặt \(\hept{\begin{cases}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=a^2\\y^2+z^2=b^2\\z^2+x^2=c^2\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=\frac{a^2+c^2-b^2}{2}\\y^2=\frac{b^2+a^2-c^2}{2}\\z^2=\frac{b^2+c^2-a^2}{2}\end{cases}}}\)
\(\Leftrightarrow M=\frac{a^2+c^2-b^2}{2\left(y+z\right)}+\frac{b^2+a^2-c^2}{2\left(z+x\right)}+\frac{c^2+b^2-a^2}{2\left(x+y\right)}\)
áp dụng bunhia ta có:
\(\hept{\begin{cases}\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\\\left(y^2+z^2\right)\left(1+1\right)\ge\left(y+z\right)^2\\\left(z^2+x^2\right)\left(1+1\right)\ge\left(z+x\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}2a^2\ge\left(x+y\right)^2\\2b^2\ge\left(y+z\right)^2\\2c^2\ge\left(z+x\right)^2\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{2}a\ge x+y\\\sqrt{2}b\ge y+z\\\sqrt{2}c\ge z+x\end{cases}}}\)
\(\Rightarrow M\ge\frac{a^2+c^2-b^2}{\sqrt{2}b}+\frac{a^2+b^2-c^2}{\sqrt{2}c}+\frac{c^2+b^2-a^2}{\sqrt{2}a}=\frac{1}{\sqrt{2}}\left(\frac{a^2}{b}+\frac{c^2}{b}-b+\frac{a^2}{c}+\frac{b^2}{c}-c+\frac{c^2}{a}+\frac{b^2}{a}-a\right)\)\(\ge\frac{1}{\sqrt{2}}\left(\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}-a-b-c\right)=\frac{1}{\sqrt{2}}\left(a+b+c\right)=\frac{6}{\sqrt{2}}\)