K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2021

Mai thi ạ giúp gấp với

 

NV
8 tháng 5 2021

Do S.ABCD là chóp tứ giác đều \(\Rightarrow SO\perp\left(ABCD\right)\)

Mà \(O\in AC\Rightarrow SO\in\left(SAC\right)\Rightarrow\left(SAC\right)\perp\left(ABCD\right)\)

Ta có: \(\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\Rightarrow SO\perp BD\\AC\perp BD\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)

Mà \(BD\in\left(SBD\right)\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)

a: SO vuông góc (ABCD)

=>(SAC) vuông góc (ABCD)

b: AC vuông góc BD

BD vuông góc SO

=>BD vuông góc (SAC)

=>(SBD) vuông goc (SAC)

a: AC vuông góc BD

AC vuông góc SO

=>AC vuông góc (SBD)

=>SB vuông góc AC

mà AC vuông góc BD

nên AC vuông góc (SBD)

BD vuông góc AC

BD vuông góc SO

=>BD vuông góc (SAC)

=>BD vuông góc SA
b: Xét ΔACB có CO/CA=CI/CB

nên OI//AB

=>OI vuông góc BC

BC vuông góc OI

BC vuông góc SO

=>BC vuông góc (SOI)

=>(SBC) vuông góc (SOI)

9 tháng 6 2019

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11

a) Theo giả thiết, S.ABCD là hình chóp đều và đáy ABCD là hình vuông nên SO ⊥ (ABCD) ( tính chất hình chóp đều)

Đáy ABCD là hình vuông cạnh a nên

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 10 trang 114 sgk Hình học 11 | Để học tốt Toán 11

=> Góc giữa hai mặt phẳng (MBD) và (ABCD) là 45 o

12 tháng 10 2018

26 tháng 10 2017

Đáp án D

Ta có A C = 2 a = S A = S C suy ra tam giác SAC đều, do đó S O = 2 a 3 2 = a 3 . Vẽ D J ⊥ S C ,   J ∈ S C . Khi đó BJ vuông góc với SC.

Ta có: S C D ∩ S C A = S C ,   J D ⊥ S C ,   J B ⊥ S C . Đặt δ = D J B ^ . Vì JD = JB nên JO là đường cao của tam giác cân DJB, suy ra JO cũng là đường phân giác. Do đó góc giữa (SDC) và (SAC) là D I O ^ = δ 2 .

Ta có S C ⊥ D J B , mà O J ⊂ D J B nên O J ⊥ S C . Trong Δ D J O ta có: O J = O D . cot δ 2 . Trong Δ S O C ta có: 1 O J 2 = 1 O S 2 + 1 O A 2 ⇔ 1 a 2 cot 2 δ 2 = 1 3 a 2 + 1 a 2  

Do đó: 1 a 2 cot 2 δ 2 = 4 3 a 2 ⇔ cot 2 δ 2 = 3 4 ⇔ 1 + cot 2 δ 2 = 7 4  

          ⇔ 1 sin 2 δ 2 = 7 4 ⇔ sin 2 δ 2 = 4 7 ⇔ cos 2 δ 2 = 3 7  

Mà cos δ 2 > 0 nên từ (1) ta có cos δ 2 = 21 7 . Vậy côsin của góc giữa (SDC) và ( S A C ) bằng 21 7

14 tháng 9 2018

3 tháng 11 2018

Đáp án là A

15 tháng 4 2017