K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

ta thấy ab2=(a+b)3 nên ab là lập phương 1 số ,a+b là bình phương 1 số

ta có:a\(\supseteq\)9,b\(\supseteq\)9 nên a+b\(\supseteq\)18

nên a+b có thể là 4 ,9, 16

xét a+b=4 thì không có giá trị a,b nào phù hợp để ab là số lập phương

xét a+b=9 thid a,b có giá trị phù hợp là 2,7 thì được ab=27 (thỏa mãn)

xét a+b=16 thì cũng không có giá trị nào phù hợp

vậy a=2,b=7 thì thỏa mãn

1 tháng 9 2020

Vì \(\left(a+b\right)^3\) là SCP

=> Đặt \(a+b=x^2\)

=> \(\overline{ab}^2=x^6\)

<=> \(\overline{ab}=x^3\)

Vì \(10\le\overline{ab}\le99\) => \(x^2\in\left\{27;64\right\}\Rightarrow x\in\left\{3;4\right\}\)

Nếu x = 3 => \(\overline{ab}=27\)

<=> \(\overline{ab}^2=27^2=9^3=\left(2+7\right)^3\left(tm\right)\)

Nếu x = 4 => \(\overline{ab}=64\)

<=> \(\overline{ab}^2=64^2=16^3\ne\left(6+4\right)^3\) => loại

Vậy SCT là 27, xem bài mình nè, chiều đi học nhé:))

26 tháng 11 2021

1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học

2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365

 

5 tháng 2 2018

Theo đề bài thì ta có:

\(\frac{ab}{|a-b|}=p\) (với p là số nguyên tố)

Xét \(a>b\)

\(\Rightarrow\frac{ab}{a-b}=p\)

\(\Leftrightarrow ab-pa+pb-p^2=-p^2\)

\(\Leftrightarrow\left(p+a\right)\left(p-b\right)=p^2\)

\(\Rightarrow\hept{\begin{cases}p+a=p\\p-b=p\end{cases}}\)\(\hept{\begin{cases}a+p=p^2\\p-b=1\end{cases}}\)

(Vì a, b, p là các số nguyên dương)

Tương tự cho trường hợp \(a< b\)

Làm nốt nhé

7 tháng 2 2018

cau tra loi dung roi

29 tháng 7 2019

ai giúp mk với

8 tháng 3 2019

lên mạng tìm luôn ý bạn