K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

Giải: Ta có:

\(\frac{1}{4}\left(a+b\right)=a^2+b^2-ab\ge\left(a+b\right)^2-3\frac{\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}\)

\(\Rightarrow0\le a+b\le1\)

Mặt khác: \(A\le20\left(a+b\right)\left(a^2+b^2-ab\right)-6\frac{\left(a+b\right)^2}{2}+2013\)

\(\Rightarrow A\le20\left(a+b\right)\frac{a+b}{4}-3\left(a+b\right)^2+2013=2\left(a+b\right)^2+2013\le2015\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

Vậy \(A_{max}=2015\Leftrightarrow a=b=\frac{1}{2}\)

28 tháng 5 2017

Từ biểu thức A ta suy ra để A max thì a, b không âm.

Từ Giả thiết ta suy ra a + b = 4(a2 - ab + b2) hay (a + b)2 = 4(a3 + b3). Thế vào A ta được:

A = 5(a + b)2 - 6(a2 + b2) + 2013 = -(a2 + b2) + 10ab + 2013 = -(a - b)2 + 8ab + 2013.

Từ GT ta cũng suy ra a + b \(\ge\)4ab nên A \(\le\)-(a - b)2 + 2(a + b) + 2013 \(\le\) 2013.

dấu "=" xảy ra khi a = b = 0. Vậy Max A = 2013 khi a = b = 0.

27 tháng 3 2016

Ta có 1/4(a+b)=a^2+b^2-ab>=(a+b)^2-3((a+b)^2/4)=(a+b)^2/4

=>0=<a+b=<1

Mặt khác A=<20(a+b)(a^2+b^2-ab)-6((a+b)^2/2)+2013

=>A=<20(a+b)((a+b)/4)-3(a+b)^2+2013=2(a+b)^2+2013=<2015

=>Amin=2015 khi a=b=1/2

1 tháng 2 2016

Em mới lớp 6

 Năm mới ròi mọi người tik mình làm quà đi

1 tháng 2 2016

có bài giải pt nào k , đăng lên đi