Cho a,b là các số thực thỏa mãn: \(a+b+4ab=4a^2+4b^2\)
Tính GTLN của: \(A=20\left(a^3+b^3\right)-6\left(a^2+b^2\right)+2013\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1/4(a+b)=a^2+b^2-ab>=(a+b)^2-3((a+b)^2/4)=(a+b)^2/4
=>0=<a+b=<1
Mặt khác A=<20(a+b)(a^2+b^2-ab)-6((a+b)^2/2)+2013
=>A=<20(a+b)((a+b)/4)-3(a+b)^2+2013=2(a+b)^2+2013=<2015
=>Amin=2015 khi a=b=1/2
Giải: Ta có:
\(\frac{1}{4}\left(a+b\right)=a^2+b^2-ab\ge\left(a+b\right)^2-3\frac{\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}\)
\(\Rightarrow0\le a+b\le1\)
Mặt khác: \(A\le20\left(a+b\right)\left(a^2+b^2-ab\right)-6\frac{\left(a+b\right)^2}{2}+2013\)
\(\Rightarrow A\le20\left(a+b\right)\frac{a+b}{4}-3\left(a+b\right)^2+2013=2\left(a+b\right)^2+2013\le2015\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Vậy \(A_{max}=2015\Leftrightarrow a=b=\frac{1}{2}\)
Từ biểu thức A ta suy ra để A max thì a, b không âm.
Từ Giả thiết ta suy ra a + b = 4(a2 - ab + b2) hay (a + b)2 = 4(a3 + b3). Thế vào A ta được:
A = 5(a + b)2 - 6(a2 + b2) + 2013 = -(a2 + b2) + 10ab + 2013 = -(a - b)2 + 8ab + 2013.
Từ GT ta cũng suy ra a + b \(\ge\)4ab nên A \(\le\)-(a - b)2 + 2(a + b) + 2013 \(\le\) 2013.
dấu "=" xảy ra khi a = b = 0. Vậy Max A = 2013 khi a = b = 0.