\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\frac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{7}-1\right)^2}{2}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+\left(4-\sqrt{2}\right)}}}\)
\(=\frac{\sqrt{7}+1}{\sqrt{2}}-\frac{\sqrt{7}-1}{\sqrt{2}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\sqrt{4+2\sqrt{3}}}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\left(\sqrt{3}+1\right)}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)^2=\sqrt{2}+4+2\sqrt{3}\)
\(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}}\)
\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+\sqrt{12}}}}\)
\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\left(\sqrt{3}+1\right)}}\)
\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}+\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\frac{4+\sqrt{4^2-7}}{2}}+\sqrt{\frac{4-\sqrt{4^2-7}}{2}}-\left(\sqrt{\frac{4+\sqrt{4^2-7}}{2}}-\sqrt{\frac{4-\sqrt{4^2-7}}{2}}\right)+\left(\sqrt{3}+1\right)^2\)
( áp dụng công thức căn phức tạp )
\(=2\sqrt{\frac{4-3}{2}}+4+2\sqrt{3}\)
\(=\sqrt{2}+4+2\sqrt{3}\)
\(A=\sqrt{\frac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{7}-1\right)^2}{2}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+\left(4-\sqrt{2}\right)}}}\)
\(=\frac{\sqrt{7}+1}{\sqrt{2}}-\frac{\sqrt{7}-1}{\sqrt{2}}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\sqrt{4+2\sqrt{3}}}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{6-2\left(\sqrt{3}+1\right)}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{2}+\left(\sqrt{3}+1\right)^2=\sqrt{2}+4+2\sqrt{3}\)
Ta có: A = (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
= (\(\sqrt{3}-1)\)\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+\sqrt{16-8\sqrt{2}+2}}}}\)
= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+4-\sqrt{2}}}}\)
= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+4-\sqrt{2}}}}\)
= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{6+2\sqrt{3}-\sqrt{2}}}}\)
= (\(\sqrt{3}-1\))\(\sqrt{6+\sqrt{24-8\sqrt{6+2\sqrt{3}-\sqrt{2}}}}\)
\(A=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)\left(5-2\sqrt{6}\right)^2}{9\sqrt{3}-11\sqrt{2}}\)
\(=\left(\sqrt{3}+\sqrt{2}\right)\left(9\sqrt{3}+11\sqrt{3}\right)\left(5-2\sqrt{6}\right)^2\)
\(=\left(49+20\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2=\left(5+2\sqrt{6}\right)^2\left(5-2\sqrt{6}\right)^2=1\)
\(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)
\(=\sqrt{4+5}=3\)
\(A=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)
d/ \(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=3+\sqrt{9+\frac{125}{27}}+3-\sqrt{9+\frac{125}{27}}-3\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=6-3x\sqrt[3]{9-9-\frac{125}{27}}\)
\(\Leftrightarrow x^3=6-5x\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow x=1\)
c/
\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{12}+4}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=3-1=2\)
\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{4^2-2.4.\sqrt{2}+\sqrt{2^2}}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\left|4-\sqrt{2}\right|}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\left|\sqrt{3}-1\right|}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{3}-2}\)
\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=\sqrt{3^2}-1^2\\ =3-1\\ =2\)