K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Ta có: A = (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)

= (\(\sqrt{3}-1)\)\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+\sqrt{16-8\sqrt{2}+2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+4-\sqrt{2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+4-\sqrt{2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{6+2\sqrt{3}-\sqrt{2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+\sqrt{24-8\sqrt{6+2\sqrt{3}-\sqrt{2}}}}\)

23 tháng 6 2019

a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)

\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)

b) Tương tự a) đ/s =5

9: \(A=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\dfrac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)

10: \(A=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

11: \(A=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

12: \(B=\left(3+\sqrt{3}\right)\sqrt{12-6\sqrt{3}}\)

\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)

=9-3=6

13: \(A=\sqrt{5}-2-\left(3-\sqrt{5}\right)\)

\(=\sqrt{5}-2-3+\sqrt{5}=2\sqrt{5}-5\)

26 tháng 10 2020

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{2^2\cdot3}-\sqrt{3^2}\)

\(=2-\sqrt{3}+2\sqrt{3}-3\)

\(=\sqrt{3}-1\)

b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right)\cdot\sqrt{2}+\sqrt{108}\)

\(=\sqrt{16}-3\sqrt{12}+\sqrt{4}+\sqrt{6^2\cdot3}\)

\(=4-3\sqrt{2^2\cdot3}+2+6\sqrt{3}\)

\(=6-3\cdot2\sqrt{3}+6\sqrt{3}\)

\(=6-6\sqrt{3}+6\sqrt{3}=6\)

26 tháng 10 2020

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{3.4}-\sqrt{3^2}=2-\sqrt{3}+\sqrt{4}.\sqrt{3}-3\)

\(=2-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}-1\)

b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right).\sqrt{2}+\sqrt{108}\)

\(=\sqrt{8}.\sqrt{2}-3\sqrt{6}.\sqrt{2}+\sqrt{2}.\sqrt{2}+\sqrt{108}\)

\(=\sqrt{8.2}-3\sqrt{6.2}+2+\sqrt{36.3}\)

\(=\sqrt{16}-3\sqrt{12}+2+\sqrt{36}.\sqrt{3}\)

\(=\sqrt{4^2}-3\sqrt{4.3}+2+6\sqrt{3}\)

\(=4-3\sqrt{4}.\sqrt{3}+2+6\sqrt{3}\)

\(=4-6\sqrt{3}+2+6\sqrt{3}=6\)

a: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-3\sqrt{3}+\dfrac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\)

\(=\sqrt{3}-3\sqrt{3}+\sqrt{3}=-\sqrt{3}\)

b: \(=\left(\left(2-2\sqrt{5}\right)\left(\sqrt{5}+2\right)+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(2\sqrt{5}+4-10-4\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(-2\sqrt{5}+\sqrt{3}-6\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=-20+2\sqrt{15}+\sqrt{15}-3-6\sqrt{5}+6\sqrt{3}\)

\(=-23+3\sqrt{15}-6\sqrt{5}+6\sqrt{3}\)

4 tháng 7 2021

a) \(\dfrac{2\sqrt{125}-3\sqrt{5}-\sqrt{180}}{-\sqrt{5}}+\sqrt{8}=\dfrac{2\sqrt{25.5}-3\sqrt{5}-\sqrt{36.5}}{-\sqrt{5}}+\sqrt{8}\)

\(=\dfrac{10\sqrt{5}-3\sqrt{5}-6\sqrt{5}}{-\sqrt{5}}+2\sqrt{2}=\dfrac{\sqrt{5}}{-\sqrt{5}}+2\sqrt{2}=2\sqrt{2}-1\)

b) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}=\left|\sqrt{2}-\sqrt{3}\right|+\sqrt{9.2}\)

\(=\sqrt{3}-\sqrt{2}+3\sqrt{2}=2\sqrt{2}+\sqrt{3}\)

c) \(\sqrt{48}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}=\sqrt{16.3}-2\sqrt{9.\dfrac{1}{3}}+\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}}\)

\(=4\sqrt{3}-2\sqrt{3}+1-\sqrt{3}=1+\sqrt{3}\)

d) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)

 

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)