Cho hình vuông ABCD . Vẽ I,K là trung điểm của AB,BC
a) Tính góc AID
b) Chứng minh DI=DK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông: ∆ABD và ∆IBD có:
BD chung
∠ABD = ∠IBD (gt)
⇒ ∆ABD = ∆IBD (cạnh huyền - góc nhọn)
b) Do ∆ABD = ∆IBD (cmt)
⇒ AD = ID (hai cạnh tương ứng)
∆DIC vuông tại I
⇒ DC là cạnh huyền
⇒ ID < DC
Mà AD = ID (cmt)
⇒ AD < DC
c) Xét hai tam giác vuông: ∆DAK và ∆DIC có:
AD = ID (cmt)
∠ADK = ∠IDC (đối đỉnh)
⇒ ∆DAK = ∆DIC (cạnh góc vuông - góc nhọn kề)
⇒ DK = DC (hai cạnh tương ứng)
d) Do ∆DAK = ∆DIC (cmt)
⇒ AK = IC (hai cạnh tương ứng)
Do ∆ABD = ∆IBD (cmt)
⇒ AB = IB (hai cạnh tương ứng)
∆ABI cân tại B
⇒ ∠BAI = ∠BIA = (180⁰ - ∠ABC)/2 (1)
Do AB = IB (cmt)
AK = IC (cmt)
⇒ BK = BC
⇒ ∆BCK cân tại B
⇒ ∠BKC = ∠BCK = (180⁰ - ∠ABC)/2 (2)
Từ (1) và (2) ⇒ ∠BAI = ∠BKC
Mà ∠BAI và ∠BKC là hai góc đồng vị
⇒ AI // KC
a: Xét tứ giác MHKD có
\(\widehat{MHK}=\widehat{MDK}=\widehat{DKH}=90^0\)
Do đó: MHKD là hình chữ nhật
b: Xét tứ giác ADKB có
\(\widehat{DKB}+\widehat{DAB}=180^0\)
=>ADKB nội tiếp
=>\(\widehat{AKB}=\widehat{ADB}=45^0\)
Xét ΔHAK vuông tại H có \(\widehat{HKA}=45^0\)
nên ΔHAK vuông cân tại H
=>HA=HK
2:
a: ΔABC cân tại A có AI là trung tuyến
nên AI vuông góc BC
b: AB=AC=10cm
\(cosBAC=\dfrac{10^2+10^2-12^2}{2\cdot10\cdot10}=\dfrac{7}{25}\)
=>góc BAC\(\simeq\)74 độ
a: tan AID=AD/AI=2
=>góc AID=63 độ
b: Xét ΔAID vuông tại A và ΔCKD vuông tại C có
AI=CK
AD=CD
=>ΔAID=ΔCKD
=>DI=DK