Thu gọn đa thức
C= x2-y2+z2-x2+y2-z2+x2+y2+z2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q = x2 + y2 + z2 + x2 – y2 + z2 + x2 + y2 – z2
Q = (x2 + x2 + x2) + (y2 – y2 + y2) + (z2 – z2 + z2)
Q = 3x2 + y2 + z2
(Có bạn nào có thắc mắc về bậc của đa thức này không? Bậc 2 nhé!!!)
(x2 + y2 + z2) + (x2 – y2 + z2)
= x2 + y2 + z2 + x2 – y2 + z2
= (x2 + x2) + (y2 – y2) + (z2 + z2)
= 2x2 + 2z2
x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1
Tính P = x + y + z
x 2 y + x y 2 + x 2 z + x z 2 + y 2 z + y z 2 + 3xyz.
= ( x 2 y + x 2 z + xyz) + (x y 2 + y 2 z + xyz) + (x z 2 + y z 2 + xyz)
= x(xy + xz + yz) + y(xy + yz + xz) + z(xz + yz + xy)
= (x + y + z)(xy + xz + yz).
\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+x^2z+xyz\right)+\left(xz^2+yz^2+xyz\right)+\left(xy^2+y^2z+xyz\right)\)
\(=x\left(xy+xz+yz\right)+z\left(xz+yz+xy\right)+y\left(xy+yz+xz\right)\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)
`@` `\text {Ans}`
`\downarrow`
\(C= x^2-y^2+z^2-x^2+y^2-z^2+x^2+y^2+z^2\)
`= (x^2 - x^2 + x^2) + (-y^2 + y^2 + y^2) + (z^2 - z^2 + x^2)`
`= x^2 + y^2 + z^2`
\(C=x^2-y^2+z^2-x^2+y^2-z^2+x^2+y^2+z^2\)
\(C=\left(x^2-x^2+x^2\right)-\left(y^2-y^2-y^2\right)+\left(z^2-z^2+z^2\right)\)
\(C=x^2-\left(-y^2\right)+z^2\)
\(C=x^2+y^2+z^2\)