K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

Phân tích đa thức thành nhân tử:(x-y)3 + (y-z)3 + (z-x)3x2y2(y-x)+y2z2(z-y)-z2x2(z-x)x8+x4+19a3-13a+6Phân tích đa thức thành nhân tử bằng phương pháp đồng nhất hệ số:x4-3x3+6x2-5x+3 bấm vào đó đi

2 tháng 8 2021

\(x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+2xyz\)..

\(=\left(x^2y+z^2y+2xyz\right)+\left(y^2x+y^2z\right)+\left(z^2x+x^2z\right)\).

\(=y\left(x+z\right)^2+y^2\left(x+z\right)+xz\left(x+z\right)\)

\(=\left(xy+yz\right)\left(x+z\right)+\left(x+z\right)\left(y^2+xz\right)\).

\(=\left(x+z\right)\left(xy+yz+y^2+xz\right)\).

\(=\left(x+z\right)\left[x\left(y+z\right)+y\left(y+z\right)\right]\).

\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\).

9 tháng 8 2015

b)x(y+z)2+y(z+x)2+z(x+y)2-4xyz

=[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2

=x(y2+2yz+z2-2yz)+y(x2+z2+2xz-2xz)+z(x+y)2

=x(y2+z2)+y(x2+z2)+z(x+y)2

=xy2+xz2+x2y+yz2+(xz+yz)(x+y)

=xy(x+y)+z2(x+y)+(xz+yz)(x+y)

=(x+y)(xy+z2+xz+yz)

=(x+y)[x(y+z)+z(y+z)]

=(x+y)(y+z)(x+z)

9 tháng 8 2015

a)x(y2-z2)+y(z2-x2)+z(x2-y2)

=x(y-z)(y+z)+yz2-x2y+x2z-y2z

=(y-z)(xy+xz)-x2(y-z)-yz(y-z)

=(y-z)(xy+xz-x2-yz)

=(y-z)[x(y-x)-z(y-x)]

=(y-z)(y-x)(x-z)

nhấn vào đây nhé có 2 cách làm: Chuyên đề Bồi dưỡng học sinh giỏi - Phân tích đa thức thành nhân tử - Giáo Án, Bài Giảng

t i c k mk!! 536546456545576768978045362546115346456575676868784675462552

27 tháng 10 2019

Câu hỏi của Kim Lê Khánh Vy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 8 2020

Ta có :

\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)^2.\left(x-y\right)+\left(y+z\right).\left(y^2-x^2+x^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2+z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2\right)-\left(y+z\right)\left(z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x^2-y^2\right)\left(x+y-y-z\right)-\left(z^2-x^2\right).\left(y+z-z-x\right)\)

\(=\left(x^2-y^2\right).\left(x-z\right)-\left(z^2-x^2\right).\left(y-x\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x-z\right)+\left(z-x\right)\left(z+x\right)\left(x-y\right)\)

\(=\left(x-y\right).\left[\left(x+y\right)\left(x-z\right)+\left(z-x\right).\left(x+z\right)\right]\)

\(=\left(x-y\right)\left(x^2-zx+xy-yz+zx+z^2-x^2-xz\right)\)

\(=\left(x-y\right)\left(z^2-zx+xy-yz\right)\)

\(=\left(x-y\right)\left[z.\left(z-x\right)-y.\left(z-x\right)\right]\)

\(=\left(x-y\right)\left(z-y\right)\left(z-x\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

14 tháng 8 2020

Ta có :

\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)^2.\left(x-y\right)+\left(y+z\right).\left(y^2-x^2+x^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2+z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2\right)-\left(y+z\right)\left(z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x^2-y^2\right)\left(x+y-y-z\right)-\left(z^2-x^2\right).\left(y+z-z-x\right)\)

\(=\left(x^2-y^2\right).\left(x-z\right)-\left(z^2-x^2\right).\left(y-x\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x-z\right)+\left(z-x\right)\left(z+x\right)\left(x-y\right)\)

\(=\left(x-y\right).\left[\left(x+y\right)\left(x-z\right)+\left(z-x\right).\left(x+z\right)\right]\)

\(=\left(x-y\right)\left(x^2-zx+xy-yz+zx+z^2-x^2-xz\right)\)

\(=\left(x-y\right)\left(z^2-zx+xy-yz\right)\)

\(=\left(x-y\right)\left[z.\left(z-x\right)-y.\left(z-x\right)\right]\)

\(=\left(x-y\right)\left(z-y\right)\left(z-x\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

13 tháng 8 2020

\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=-xy^2+yx^2-yz^2+zy^2-xz^2+zx^2\)

\(=xy^2\left(1-1\right)+yz^2\left(1-1\right)+zx^2\left(1-1\right)\)

\(=\left(xy^2+yz^2+zx^2\right).0\left(=0\right)\)

27 tháng 10 2019

Câu hỏi của nguyễn khánh linh - Toán lớp 8 - Học toán với OnlineMath

13 tháng 6 2015

a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)

b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)

đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha

c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)

d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.

có gì liên hệ chị. đúng nha ;)