K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

a, A = 2023 - \(\dfrac{2020}{x}\) ( \(x\in\) N)

   Đk: \(x\) # 0

⇒ \(x\in\) N*

\(x\in\) N* nên \(\dfrac{2020}{x}>0\) vậy Amax  ⇔\(\dfrac{2020}{x}\)  đạt giá trị nhỏ nhất.

\(\dfrac{2020}{x}\) đạt giá trị nhỏ  nhất ⇔ \(x\)max mà \(x\) là số tự nhiên nên không có số tự nhiên lớn nhất

Vậy không có giá trị lớn nhất của A

b, B = 2023 - 1003: (1004 - \(x\)) Với \(x\) là số tự nhiên; đk \(x\) # 1004

       B = 2023 + \(\dfrac{1003}{x-1004}\)

       Nếu \(x\) < 1004 ⇒ \(x\)  - 1004 < 0 ⇒ \(\dfrac{1003}{x-1004}\) < 0 

     ⇒ \(\dfrac{1003}{x-1004}\) + 2023 < 2023 (1)

      Nếu \(x\) > 1004 ⇒ \(x-1004\) > 0 

Vậy B max ⇔ \(\dfrac{1003}{x-1004}\) đạt giá trị lớn nhất 

        \(\dfrac{1003}{x-1004}\) đạt giá trị lớn nhất ⇔ \(x-1004\) đạt giá trị nhỏ nhất.

        Vì \(x\) > 1004 và \(x\) là số tự nhiên nên \(x\) nhỏ nhất khi \(x\) = 1005

       ⇒ Bmax  = 2023 + \(\dfrac{1003}{1005-1004}\)  = 3026 xảy ra khi \(x\) = 1005 (2)

Kết luận:

Kết hợp (1) và (2) ta có Giá trị lớn  nhất của biểu thức B là 3026 xảy ra khi \(x=1005\)

 

 

20 tháng 10 2023

A = 2023 - 1003:999 = 2023 - 1 = 2022.
hc tốt

 

20 tháng 10 2023

Vì 1003 < 999, nên phần tử trong dấu chia sẽ nhỏ hơn 1

Vậy giá trị nhỏ nhất của biểu thức A là 

 

A = 2023 - 1003:999 = 2023 - 1 = 2022.

 

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

24 tháng 6 2018

a)Để  \(A=2003-\frac{1003}{999-x}\) có giá trị nhỏ nhất

\(\Rightarrow\frac{1003}{999-x}\) có giá trị lớn nhất

\(\frac{1003}{999-x}\ge1003\) 

Dấu "=" xảy ra khi

\(\frac{1003}{999-x}=1003\)

=> 999 - x = 1

x = 999-1

x = 998

=> giá trị nhỏ nhất của \(A=2003-\frac{1003}{999-998}=2003-1003=1000\) tại x = 998

b) Để \(A=2003-\frac{1003}{999+x}\) đạt giá trị nhỏ nhất

=> \(\frac{1003}{999+x}\) có giá trị lớn nhất

mà x là số tự nhiên

\(\Rightarrow\frac{1003}{999+x}\ge\frac{1003}{999}\)

Dấu "=" xảy ra khi

1003/(999+x) = 1003/999

=> 999 + x = 999

x = 0

=> giá trị nhỏ nhất của A = 2003 - 1003/999+0  = 2003 - 1003/999 = 2002 và 4/999 tại x = 0

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Không tồn tại số tự nhiên x thỏa đề bạn nhé.

4 tháng 8 2018

bạn cần câu nào?

4 tháng 7 2023

B = 2003 - \(\dfrac{1003}{999-x}\) đk \(x\) # 999

B = 2003 + \(\dfrac{1003}{x-999}\) 

Nếu \(x\) > 999 ⇒ \(x-999>0\) ⇒ \(\dfrac{1003}{x-999}\) > 0

   ⇒ 2003 + \(\dfrac{1003}{x-999}\) > 2003 (1)

Nếu \(x\) < 999 ⇒ \(x-999\) < 0 ⇒ \(\dfrac{1003}{x-999}\) < 0

        2003 + \(\dfrac{1003}{x-999}\) < 2003

Vì \(x\) là số tự nhiên nên 2003 + \(\dfrac{1003}{x-999}\) đạt giá trị nhỏ nhất ⇔

\(\dfrac{1003}{x-999}\) đạt giá trị nhỏ nhất ⇔ \(x-999\) đạt giá trị lớn nhất

\(x-999\) đạt giá trị lớn nhất \(\Leftrightarrow\) \(x\) lớn nhất.

vì \(x\) là số tự nhiên và \(x\) < 999 nên \(x\) lớn nhất khi \(x\) = 998

⇒ Vậy Bmin = 2003 + \(\dfrac{1003}{998-999}\) = 2003 - 1003 = 1000 (2)

Kết hợp (1) và(2) ta có: 

Giá trị nhỏ nhất của B là 1000 xả ra khi \(x\) = 998 

 

 

3 tháng 8 2015

x = 999 nguyễn trung hiếu thì sao tính được        

giá trị nhỏ nhất là      1000  tại x= 998