Cho biêu thức: M = 1/4 + 1/9 + 1/16 + 1/25 +...+ 1/20242.
Chứng minh rằng: M<2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: =>(x-9)(x-1)=0
=>x=9 hoặc x=1
b: =>(x+4)(x^2-4x+16)+(x+4)(x-16)=0
=>(x+4)(x^2-4x+16+x-16)=0
=>(x+4)(x^2-3x)=0
=>x(x-3)(x+4)=0
=>x=0;x=3;x=-4
bài 2 :
a: =>(x-9)(x-1)=0
=>x=9 hoặc x=1
b: =>(x+4)(x^2-4x+16)+(x+4)(x-16)=0
=>(x+4)(x^2-4x+16+x-16)=0
=>(x+4)(x^2-3x)=0
=>x(x-3)(x+4)=0
=>x=0;x=3;x=-4
\(P=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+...+\frac{1}{121}+\frac{1}{144}\)
\(\Rightarrow P=\frac{1}{4}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{11^2}+\frac{1}{12^2}\)
Ta có : \(P< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}+\frac{1}{11.12}\)
\(\Rightarrow P< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(\Rightarrow P< \frac{1}{4}+\frac{1}{2}-\frac{1}{12}\)
\(\Rightarrow P< \frac{2}{3}\left(đpcm\right)\)
\(P=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+...+\frac{1}{121}+\frac{1}{144}\)
\(P=\frac{1}{4}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{11^2}+\frac{1}{12^2}\)
Có : \(P< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}+\frac{1}{11.12}\)
\(\Rightarrow P< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(\Rightarrow P< \frac{1}{4}=\frac{1}{2}-\frac{1}{12}\)
\(\Rightarrow P< \frac{2}{3}\)( đpcm )
a, Ta có :
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)
Ta có : 1/4=1/2*2>1/2*3
1/9=1/3*3>1/3*4
...
1/100=1/10*10>1/10*11
=>A>1/2*3+1/3*4+...+1/10*11=1/2 - 1/3+1/3 - 1/4 +...+1/10 - 1/11
=1/2 - 1/11=9/22=54/132<65/132(bạn hình như viết sai đầu bài chứ cách này đúng mà!)
Bài 1: CMR:1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Giải
Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
M< 1-1/10 < 9/10 (1)
Vì 9/10 < 1 (2)
Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Bài 2:So sánh với 1: 1/4+1/9+1/16 + 1/25 +...+1/10000
Giải
Ta đặt M =1/4+1/9+1/16 + 1/25 +...+1/10000
Hay M = 1/2X2+ 1/3X3+1/4X4+1/5X5 +...+1/100X100
M< 1/1x2+ 1/2x3+1/3x4+1/4x5+...+1/99x100
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5)+...+(1/99-1/100)
M< 1-1/100 < 99/100 (1)
Vì 99/100 < 1 (2)
Từ(1) và (2) ta có : 1/4+1/9+1/16 + 1/25 +...+1/10000 <1
A>B
a>b