K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

Điều kiện <=> y2 =1 -(x-2)2 \(\ge0< =>\left(x-2\right)^2\le1< =>-1\le x-2\le1< =>1\le x\le3.\)

 m = x2+y2 = x2 +1 -(x-2)2 = 4x -3

=> 4.1-3 \(\le m\le\)4.3-3 <=> \(1\le m\le9\)

m Min =1 khi x =1; m Max= 9 khi x =3

14 tháng 1 2020

thanks

20 tháng 5 2018

x,y€0;1]

(x-1)(y-1)≥0

xy-(x+y)+1≥0

3xy-3(x+y)+3≥0:; -2(x+y)+3≥0

(x+y)≤3/2

x+y=3xy=>9(xy)^2-4(xy)≥0=> xy≥4/9

=>(x+y)€[4/3;3/2]

P=x^2+y^2-4xy=(x+y)^2-6xy=(x+y)^2-2(x+y)=[(x+y-1]^2-1

Pmin=(4/3-1)^2-1=1/9-1=-8/9

khi x+y=4 /3; xy=4/9

x=y=2/3

Pmax=(3/2-1)^2-1=1/4-1=-3/4

khi x or y =1

(x,y)=(1,1/2);(1/2;1)

20 tháng 5 2018

\(P=x^2+y^2-4xy\)

\(P=\left(x+y\right)^2-2xy-4xy\)

\(P=\left(3xy\right)^2-6xy\)

\(P=\left(3xy\right)^2-2.3xy.1+1-1\)

\(P=\left(3xy-1\right)^2-1\ge-1\)

dấu \("="\) xảy ra \(\Leftrightarrow3xy-1=0\Leftrightarrow xy=\dfrac{1}{3}\)

vậy MIN \(P=-1\Leftrightarrow xy=\dfrac{1}{3}\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

1 tháng 3 2016

de thế mà ko biết lam

21 tháng 3 2016

ai biết giải hộ. xin chỉ giáo