K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Do \(xyz=4=>\sqrt{xyz}=2\)

=>P=\(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{2\sqrt{y}}{\sqrt{yz}+2\sqrt{z}+2}\)

=\(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{xy^2z}}{\sqrt{yz+\sqrt{xyz^2}+\sqrt{xyz}}}\)

=\(\frac{1}{\sqrt{y}+1+\sqrt{yz}}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}=\frac{\sqrt{yz}+\sqrt{y}+1}{\sqrt{yz}+\sqrt{y}+1}=1\)

\(P=1=>\sqrt{P}=1\)

20 tháng 5 2017

nói chung là cái nào có 2 ý,,,bạn cho hết vào trong căn ý,,,rồi thế 4 vào là xong

4 tháng 7 2016

Đề Sai sửa lại nha \(A=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{10.\sqrt{z}}{\sqrt{xz}+10\sqrt{x}+10}\)

\(B=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}\)

\(C=\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}\)

\(D=\frac{10.\sqrt{z}}{\sqrt{xz}+10\sqrt{x}+10}\)

\(\Rightarrow C=\frac{\sqrt{x}.\sqrt{y}}{\sqrt{x}.\left(\sqrt{yz}+\sqrt{y}+1\right)}=\frac{\sqrt{xy}}{\sqrt{yzx}+\sqrt{yx}+\sqrt{x}}=\frac{\sqrt{xy}}{10+\sqrt{yx}+\sqrt{x}}\)

(do xyz=100 nên căn xyz=10) 

\(\Rightarrow D=\frac{\left(\frac{10.\sqrt{z}}{\sqrt{z}}\right)}{\left(\frac{\sqrt{xz}+10\sqrt{x}+10}{\sqrt{z}}\right)}=\frac{10}{\sqrt{x}+10+\frac{\sqrt{xyz}}{\sqrt{z}}}=\frac{10}{\sqrt{x}+10+\sqrt{xy}}\)(10= căn xyz do xyz=100)

\(\Leftrightarrow A=B+C+D=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\frac{\sqrt{xy}}{10+\sqrt{yx}+\sqrt{x}}+\frac{10}{\sqrt{x}+10+\sqrt{xy}}\)

\(=\frac{\sqrt{xy}+\sqrt{x}+10}{\sqrt{xy}+\sqrt{x}+10}=1\)

T i c k cho mình nha cảm ơn 

4 tháng 7 2016

Ta có x.y.z=100 

Suy ra \(\sqrt{xyz}=10\)

Thay \(10=\sqrt{xyz}\) vào A ta được

\(A=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{xyz}\sqrt{z}+\sqrt{xyz}}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{y}+1+\sqrt{yz}\right)}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{zx}\left(1+\sqrt{yz}+\sqrt{y}\right)}\)

\(A=\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{yz}}{10\left(\sqrt{yz}+\sqrt{y}+1\right)}\)

Mình giải tới đây bí mất rồi ai biết thì làm tiếp rồi chỉ bạn đó nhé

11 tháng 10 2020

Ta có: \(P=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}=\frac{1}{\frac{x}{\sqrt{yz}}+2}+\frac{1}{\frac{y}{\sqrt{zx}}+2}+\frac{1}{\frac{z}{\sqrt{xy}}+2}\)

Đặt \(\frac{x}{\sqrt{yz}}=c,\frac{y}{\sqrt{zx}}=t;\frac{z}{\sqrt{xy}}=k\left(c,t,k>0\right)\)thì ctk = 1

Ta cần tìm giá trị lớn nhất của \(P=\frac{1}{c+2}+\frac{1}{t+2}+\frac{1}{k+2}\)với ctk = 1

Dự đoán MaxP = 1 khi c = t = k = 1

Thật vậy: \(P=\frac{kt+2k+2t+4+ct+2c+2t+4+ck+2c+2k+4}{\left(c+2\right)\left(t+2\right)\left(k+2\right)}=\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{ctk+2\left(kt+tc+ck\right)+4\left(c+t+k\right)+8}\le\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{1+\left(kt+tc+ck\right)+3\sqrt[3]{\left(ctk\right)^2}+4\left(c+t+k\right)+8}=1\)Đẳng thức xảy ra khi x = y = z

11 tháng 10 2020

Ta có: \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=\frac{1}{2}\left(1-\frac{x}{x+2\sqrt{yz}}\right)\le\frac{1}{2}\left(1-\frac{x}{x+y+z}\right)=\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)\)(bđt cosi) (1)

CMTT: \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}\le\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)\)(2)

\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)(3)

Từ (1), (2) và (3) cộng vế theo vế ta có:

\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)

=> P \(\le\frac{1}{2}\left(\frac{y+z+x+z+x+y}{x+y+z}\right)=\frac{1}{2}\cdot\frac{2\left(x+y+z\right)}{x+y+z}=1\)

Dấu "=" xảy ra <=> x = y = z

Vậy MaxP = 1 <=> x = y = z

14 tháng 7 2021

Từ zyz = 4 => \(\sqrt{xyz}=\sqrt{4}=2\)

Ta có:A = \(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{2\sqrt{z}}{\sqrt{zx}+2\sqrt{z}+2}\)

A = \(\frac{\sqrt{xz}}{\sqrt{xyz}+\sqrt{xz}+2\sqrt{z}}+\frac{\sqrt{xyz}}{\sqrt{xy^2z}+\sqrt{xyz}+\sqrt{xz}}+\frac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\)

A = \(\frac{\sqrt{xz}}{\sqrt{xz}+2\sqrt{z}+2}+\frac{2}{2\sqrt{z}+\sqrt{xz}+2}+\frac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\)

A = \(\frac{\sqrt{xz}+2\sqrt{z}+2}{\sqrt{xz}+2\sqrt{z}+2}=1\)

29 tháng 8 2018

Ta có: \(xyz=4\Rightarrow\sqrt{xyz}=2\)

Thay vào biểu thức P thì được:

\(P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{xyz^2}}{\sqrt{zx}+\sqrt{xyz^2}+\sqrt{xyz}}\)

\(P=\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}\)

\(P=\frac{1+\sqrt{y}+\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}=1\Rightarrow\sqrt{P}=1.\)

Vậy ...

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Bạn tham khảo lời giải tại đây:

Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến

NV
16 tháng 10 2019

\(3-2P=\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{xz}}+\frac{z}{z+2\sqrt{xy}}\)

\(3-2P\ge\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

\(\Rightarrow2P\le2\Rightarrow P\le1\)

Dấu "=" xảy ra khi \(x=y=z\)

\(M\le\sqrt{\left(1+1\right)\left(x+y+2\right)}=\sqrt{20}=4\sqrt{5}\)

\(M_{max}=4\sqrt{5}\) khi \(\left\{{}\begin{matrix}x-2=y+4\\x+y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

NV
20 tháng 6 2019

Bạn xem lại chỗ \(\sqrt{zx}+2\sqrt{z}+2\) có phải \(\sqrt{zx}+2\sqrt{z}+4\) không?

Nếu đúng thì tính được, còn ko thì bó tay

13 tháng 8 2018

ta có : \(C=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xyz}+\sqrt{xz}+2\sqrt{z}}\)

\(=\dfrac{\sqrt{x}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2}{\sqrt{xy}+\sqrt{x}+2}\)

\(=\dfrac{1}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{xyz}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}\)

\(=\dfrac{\sqrt{y}+1}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}=\dfrac{\sqrt{yz}+\sqrt{y}+1}{\sqrt{yz}+\sqrt{y}+1}=1\)