Tìm số tự nhiên n để n-2/3n+7 là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ước nguyên tố chung của 3n + 2 và 7n + 1
ta có : 3n + 2 chia hết cho d ; 7n + 1 chia hết cho d
=> 7( 3n + 2) chia hết cho d ; 3( 7n + 1) chia hết cho d
=> ( 21n + 14) - ( 21n + 3) chia hết cho d
=> 11 chia hết cho d
=> d = 11
ta có : 3n + 2 chia hết cho 11
=> 3n + 11 - 9 chia hết cho 11
=> 3n - 9 : hết cho 11
=> 3n ko chia hết cho 11
vì ( 3 ; 11) = 1
=> n ko chia hết cho 11
=> n ∈11k => p/s tối giản
a: Để A là số tự nhiên thì
6n+8+91 chia hết cho 3n+4
mà n>=0
nên \(3n+4\in\left\{7;13;91\right\}\)
=>n=1 hoặc n=3
b: Để A là phân số tối giản thì 3n+4 ko là ước của 91
=>3n+4<>7k và 3n+4<>13a
=>n<>(7k-4)/3 và n<>(13a-4)/3(k,a là các số tự nhiên)
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Gọi UCLN(n-2, 3n+7) = d (d∈N*)
=> n-2 ⋮ d => 3(n-2)⋮d => 3n-6 ⋮ d
3n+7 ⋮ d
=> (3n+7)-(3n-6)⋮d => 13⋮d
Do d ∈ N* => d = 1; 13
Xét d = 13
=> n-2⋮13 => n chia 13 dư 2
Để n-2/3n+7 tối giản thì d=1 => d≠13
Vậy n-2/3n+7 tối giản khi n không chia 13 dư 2
Đặt `d=(n-2,3n+7)` với `d\inNN^(**)`
`=>{(n-2\vdots d),(3n+7\vdots d):}`
`=>3n+7-3(n-2)\vdotsd`
`<=>13\vdots d=>d\in Ư(13)={1;13}`
Để `(n-2)/(3n+7)` là phân số tối giản `=>d\ne13`
hay `n-2\cancel(\vdots)13`
`=>n\ne13k+2(k\inNN)`
Vậy `n\ne 13k+2` với `k` là số tự nhiên tuỳ ý