cho \(\tan a\)=2-\(\sqrt{3}\)( a là góc nhọn ). không dùng máy tính hãy tính B=\(\frac{2\cos a-\sin a}{\cos a+2\sin a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta có: \(\cos\left(90^0-\alpha\right)=\sin\alpha\)
\(\Leftrightarrow\sin\alpha=1:\sqrt{\dfrac{1^2+2^2}{1}}=1:\sqrt{5}=\dfrac{\sqrt{5}}{5}\)
Câu 2:
a) \(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\dfrac{16}{25}}=\dfrac{3}{5}\)
\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)
Ta có: \(\sin {70^o} = \cos {20^o};\;\cos {110^o} = - \cos {70^o} = - \sin {20^o}\)
\(\begin{array}{l} \Rightarrow A = {(\sin {20^o} + \cos {20^o})^2} + {(\cos {20^o} - \sin {20^o})^2}\\ = ({\sin ^2}{20^o} + {\cos ^2}{20^o} + 2\sin {20^o}\cos {20^o}) + ({\cos ^2}{20^o} + {\sin ^2}{20^o} - 2\sin {20^o}\cos {20^o})\\ = 2({\sin ^2}{20^o} + {\cos ^2}{20^o})\\ = 2\end{array}\)
Ta có: \(\tan {110^o} = - \tan {70^o} = - \cot {20^o};\;\cot {110^o} = - \cot {70^o} = - \tan {20^o}.\)
\( \Rightarrow B = \tan {20^o} + \cot {20^o} + ( - \cot {20^o}) + ( - \tan {20^o}) = 0\)
\(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}\)
\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{2}{3}}{\frac{\sqrt{5}}{3}}=\frac{2\sqrt{5}}{5}\)
\(\cot=\frac{1}{\tan}=\frac{1}{\frac{2\sqrt{5}}{5}}=\frac{\sqrt{5}}{2}\)
Tương tự câu 1
Chú ý các tỉ số lượng giác sin và cos có giá trị trong khoảng (0;1)
a, sin 20 0 < sin 70 0
b, cos 60 0 > cos 70 0
c, tan 73 0 20 ' > tan 45 0
d, cot 20 0 > cot 37 0 40 '
\(B=\frac{2cosa-sina}{cosa+2sina}=\frac{2-tana}{1+2tana}=\frac{2-2+\sqrt{3}}{1+2\left(2-\sqrt{3}\right)}=\frac{\sqrt{3}}{5-2\sqrt{3}}\)
PS: Mấy cái như điều kiện xác định thì bạn tự làm nhé.