Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cos^215+cos^275+cos^225+cos^265+cos^235+cos^255+cos^245\)
\(=cos^215+sin^2\left(90-75\right)+cos^225+sin^2\left(90-65\right)+cos^235+sin^2\left(90-55\right)+\left(\dfrac{\sqrt{2}}{2}\right)^2\)
\(=cos^215+sin^215+cos^225+sin^225+cos^235+sin^235+\dfrac{1}{2}\)
\(=1+1+1+\dfrac{1}{2}=\dfrac{7}{2}\)
bài 1
a) \(M=\sin^242^o+\sin^243^o+\sin^244^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)
\(M=\cos^248^o+\cos^247^o+\cos^246^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)
\(M=\left(\sin^248^o+\cos^248^o\right)+\left(\sin^247^o+\cos^247^o\right)+\left(\sin^246^o+\cos^246^o\right)+\sin^245^o\)
\(M=1+1+1+0,5\)
\(M=3,5\)
bài 1
b) \(N=\cos^215^o-\cos^225^o+\cos^235^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)
\(N=\sin^275^o-\sin^265^o+\sin^255^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)
\(N=\left(\sin^275^o+\cos^275^o\right)-\left(\sin^265^o+\cos^265^o\right)+\left(\sin^255^o+\cos^255^o\right)-\cos^245^o\)
\(N=1-1+1-0,5\)
\(N=0,5\)
Chia cả tử và mẫu cho \(cosa\)
\(D=\dfrac{\dfrac{cosa}{cosa}+\dfrac{sina}{cosa}}{\dfrac{cosa}{cosa}-\dfrac{sina}{cosa}}=\dfrac{1+tana}{1-tana}=\dfrac{1+\dfrac{1}{2}}{1-\dfrac{1}{2}}=3\)
\(\dfrac{\left(cosa-sina\right)^2-\left(cosa+sina\right)^2}{cosa\cdot sina}\)
\(=\dfrac{\left(cosa-sina-cosa-sina\right)\left(cosa-sina+cosa+sina\right)}{cosa\cdot sina}\)
\(=\dfrac{-2\cdot sina\cdot2\cdot cosa}{cosa\cdot sina}=-4\)
\(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)\(\Leftrightarrow\cos^2\alpha+\sin^2\alpha=1\)(luôn đúng)
\(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}=\frac{\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha-\sin^2\alpha-\cos^2\alpha+2\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)
\(=\frac{4\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}=4\)(đpcm)