có thể tìm được hai số tự nhiên a,b để 36a + 6b = 17 không?
Cả nhà ơi giúp mik vớiiiiiiiiiiiiii ! S O S !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tổng ba số tự nhiên liên tiếp có dạng như sau:
(1k+1 )+ (1k+ 2) + (1k + 3) = 1k6
Mà 1k6 chia hết cho 3 (6 chia hết cho 3)
Nên tổng ba số tự nhiên liên tiếp chia hết cho 3
b) Tổng bốn số tự nhiên liên tiếp có dạng:
(1k + 1 ) + (1k + 2) + (1k + 3) + (1k + 4) = 1k10
1k10 không chia hết cho 4 nên tổng bốn số tự nhiên liên tiếp ko chia hết cho 4
16)
a) (15 + 7n) chia hết cho n
Theo quy tắc thì nếu (a + b) chia hết cho k thì a và b đều chia hết cho k
Vậy 15 chia hết cho 5 (bỏ đi 7n vì ở đây vẫn là n ẩn 0
Suy ra n thuộc U(15)
Ư(15) = { 1 ; 3 ; 5 ; 15 }
Thử lần lượt các số trên với 7n: bằng cách đem: 7n chia n
Ta có: 71 chia hết cho 1 ( 1 là n) => Chọn
73 không chia hết cho 3 (3 là n) => Bỏ chọn
75 chia hết cho 5 ..tương tự như trên.. => Chọn
7(15) vượt quá số có 2 chữ số => Bỏ chọn
Vậy n được là: 1 và 5
b) Tương tự như trên
17) 66a + 55b = 111 011?
Nhận xét: 111 011? là số có 7 chữ số
Mà trong khi 66a + 55b đều là số có 2 chữ số => Tổng trên tối đa là 4 chữ số.
4 < 7 => Không thể tìm được số tự nhiên a và b để thỏa mãn yêu cầu trên
17
Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b
Ta có VT = 36a + 12b = 12 . (3a + b)
Do 12 . (3a + b) \(⋮\)12 mà 24302 \(⋮̸\)12
=> VT = VP (vô lý)
Vậy không thể tồn tại hai số tự nhiên a và b mà 36a + 12b = 24302.
Tái bút: Do mình không giỏi toán nên chỉ có thể trình bày theo ý hiểu của mình, mong bạn thông cảm.
Giải thích các bước giải:
Vì 12a và 36b phải chia hết cho 12
=>Ta có : 12a chia hết cho 12
36b chia hết cho 12
Mà : 1234 chia hết cho 12
1) a) Ta có :
15 + 7n chia hết cho n
mà n chia hết cho n
nên 7n chia hết cho n
=> (15 + 7n ) - 7n chia hết cho n
=> 15 chia hết cho n
=> n thuộc Ư(15) nên n = 1 ; -1 ; 3 ; -3 ; 5 ; -5 ;15 ; -15
b) Ta có :
n + 28 chia hết cho n +4
mà n+4 chia hết cho n+4
nên n+28 - (n+4) chia hết cho n+4
=> 32 chia hết cho n+4
=>n+4 thuộc Ư(32) nên n+4=-1;1;-2;2;-4;4;8;-8;16;-16;32;-32
=> n lần lượt = -5;-3;-6;-2;-8;0;4;-12;12;-20;28;-36
phần 2 dài quá vs m cx không chắc đúng nên làm phần 3 luôn
3) vì số tự nhiên chia cho 18 dư 12 có dạng là : 18k + 12
mà 18 chia hết cho 6
và 12 chia hết cho 6
nên 18k + 12 chia hết cho 6
Vậy không tồn tại số tự nhiên chia cho 18 dư 12 , còn chia 6 dư 2
2. Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b
ko bạn ới
Vì 36a chẵn và 6b chẵn
=>36a+6b chẵn
Mà 17 là lẻ => mâu thuẫn
=>ko có