Chứng minh:
S= 5/20 + 5/21 + 5/22 + 5/23 + 5/24 > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do \(\frac{5}{20}< 1;\frac{5}{21}< 1;\frac{5}{22}< 1;\frac{5}{23}< 1;\frac{5}{24}< 1\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}< 1\)
Vậy S < 1
Mk nghĩ thế bn ạ
Ai thấy tớ đúng ủng hộ nha
Giải:
Ta có:
\(\dfrac{5}{20}>\dfrac{5}{25}\) ; \(\dfrac{5}{21}>\dfrac{5}{25}\) ;\(\dfrac{5}{22}>\dfrac{5}{25}\) ; \(\dfrac{5}{23}>\dfrac{5}{25}\) ; \(\dfrac{5}{24}>\dfrac{5}{25}\)
\(\Rightarrow S=\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}>\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}+\dfrac{5}{25}=1\)
Vậy \(S=\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}>1\) ( đpcm )
Giải:
Dễ thấy:
\(20< 25\Leftrightarrow\dfrac{5}{20}>\dfrac{5}{25}\)
\(21< 25\Leftrightarrow\dfrac{5}{21}>\dfrac{5}{25}\)
\(.....................\)
\(24< 25\Leftrightarrow\dfrac{5}{24}>\dfrac{5}{25}\)
Cộng vế theo vế ta có:
\(S>\dfrac{5}{25}+\dfrac{5}{25}+...+\dfrac{5}{25}=\dfrac{5}{25}.5=\dfrac{25}{25}=1\)
Vậy \(S>1\) (Đpcm)
Do \(\frac{5}{20}>\frac{5}{21};\frac{5}{21}>\frac{5}{22};\frac{5}{22}>\frac{5}{23};\frac{5}{23}>\frac{5}{24}\)
Mà \(\frac{5}{24}>\frac{5}{25}\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}+\frac{5}{25}=5.\frac{5}{25}=1\)
Vậy M > 1
Ai thấy đúng k nha
trả lời thế này chắc được điểm cao đó :
Ta thấy : \(\frac{5}{20}>\frac{5}{24}\); \(\frac{5}{21}>\frac{5}{24}\); \(\frac{5}{22}>\frac{5}{24}\); \(\frac{5}{23}>\frac{5}{24}\); \(\frac{5}{24}=\frac{5}{24}\)
\(\Rightarrow\)\(S=\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>\frac{5}{24}+\frac{5}{24}+\frac{5}{24}+\frac{5}{24}+\frac{5}{24}=\frac{5}{24}.5=\frac{25}{24}\)
\(S>\frac{25}{24}>\frac{24}{24}=1\)
\(\Rightarrow S>1\)
Ta có :
1<5/24x5
Mà 5/20>5/24
5/21>5/24
5/22>5/24
5/23>5/24
5/24=5/24
=>5/20+5/21+5/22+5/23+5/24>5x5/24
S>1
Ta có:5/20>5/25
5/21>5/25
5/22>5/25
5/23>5/25
5/24>5/25
=>S=5/20+5/21+5/22+5/23+5/24>5/25+5/25+5/25+5/25+5/25=1
=>5/20+5/21+5/22+5/23+5/24>1
DỄ
DO: 5/20 <1
5/21<1
5/22<1
5/23<1
5/24<1
=> 5/20+5/21+5/22+5/23+5/24<1
hay S<1 ( ĐPCM)
ĐÚNG NÈ ỦNG HỘ
Ta có:\(\dfrac{1}{20}>\dfrac{1}{21}>\dfrac{1}{22}>\dfrac{1}{23}>\dfrac{1}{24}>\dfrac{1}{25}\)
=>S=\(\dfrac{5}{20}+\dfrac{5}{21}+\dfrac{5}{22}+\dfrac{5}{23}+\dfrac{5}{24}=5\left(\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+\dfrac{1}{24}\right)>5\cdot\left(\dfrac{1}{25}+\dfrac{1}{25}+\dfrac{1}{25}+\dfrac{1}{25}+\dfrac{1}{25}\right)\)
=>S>\(5\cdot\dfrac{5}{25}\)
=>S>1(đpcm)
1/5+(1/20+1/21+1/22+1/23+1/24+1/25)+(1/101+1/102+103+104+105) Ta thấy 1/21;1/22;1/23;1/24;1/25 đều nhỏ hơn 1/20 nên 1/21+1/22+1/23+1/24+1/25<5×1/20<1/4 Tương tự 1/101+1/102+1/103+1/104+1/105<5×1/100<1/20 1/5+1/20+1/20=6/20=3/10 1/5+(<1/4)+(<1/20)<1/2 1/2=5/10 3/10<5/10 vậy suy ra điều cần chứng minh
1/5+(1/20+1/21+1/22+1/23+1/24+1/25)+(1/101+1/102+103+104+105)
Ta thấy 1/21;1/22;1/23;1/24;1/25 đều nhỏ hơn 1/20 nên
1/21+1/22+1/23+1/24+1/25<5×1/20<1/4
Tương tự
1/101+1/102+1/103+1/104+1/105<5×1/100<1/20
1/5+1/20+1/20=6/20=3/10
1/5+(<1/4)+(<1/20)<1/2
1/2=5/10
3/10<5/10 vậy suy ra điều cần chứng minh
Ta có :
\(\frac{5}{20}>\frac{5}{25}\)
\(\frac{5}{21}>\frac{5}{25}\)
\(\frac{5}{22}>\frac{5}{25}\)
\(\frac{5}{23}>\frac{5}{25}\)
\(\frac{5}{24}>\frac{5}{25}\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>5.\frac{5}{25}=1\)
\(\Rightarrow\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>1\)
ta có S=5/20+5/21+5/22+5/23+5/24>5/25+5/25+5/25+5/25+5/25=5/25*5=1
=>đpcm