K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

\(\frac{a}{b+c}>\frac{a}{a+b+c}\) (do a > 0)

Tương tự: \(\frac{b}{a+c}>\frac{b}{a+b+c}\)

                \(\frac{c}{a+b}>\frac{c}{a+b+c}\)

Từ 3 bất đẳng thức trên suy ra:

  \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

Ta sẽ chứng minh:

  \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)  

Thât vậy, do a, b, c là các cạnh của tam giác nên bất đẳng thức trên tương đương với

   \(a\left(a+b+c\right)< 2a\left(b+c\right)\)

\(\Leftrightarrow a^2+ab+ac< 2ab+2ac\)

\(\Leftrightarrow a\left(a-b-c\right)< 0\)

Bất đẳng thức này đúng vì a>0 và a < b + c (vì trong tam giác, tổng hai cạnh lớn hơn cạnh thứ ba).

Vậy ta có: \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)

Tương tự, \(\frac{b}{a+c}< \frac{2b}{a+b+c}\)

               \(\frac{c}{a+b}< \frac{2c}{a+b+c}\)

Cộng 3 bất đẳng thức trên suy ra:

  \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Vậy bài toán đã được chứng minh.

15 tháng 5 2017

Mình chỉ chứng minh được bé hơn 2 thôi nhe

Theo bất đẳng thức tam giác thì b+c>a => \(\frac{a}{b+c}< \frac{a}{a}\left(=1\right)\)

Tương tự ta cũng có 

\(\frac{b}{a+c}< 1\)

\(\frac{c}{a+b}< 1\)

=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 3\)

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông tại...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0
3 tháng 3 2019

Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c 
=> p - a = (a + b + c)/2 - a 
=> p - a = (b + c + a - 2a)/2 
=> p - a = (b + c - a)/2 
=> 2(p - a) = b + c - a (1) 
Tương tự ta chứng minh được: 
2(p - b) = a + c - b (2) 
2(p - c) = a + b - c (3) 
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b) 
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ] 
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] 
Bây giờ ta đã đưa bài toán về chứng minh 
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Ta có: (x - y)² ≥ 0 
<=> x² - 2xy + y² ≥ 0 
<=> x² - 2xy + y² + 4xy ≥ 4xy 
<=> x² + 2xy + y² ≥ 4xy 
<=> (x + y)² ≥ 4xy 
=> với x + y ≠ 0 và xy ≠ 0 
=> (x + y)²/(x+ y) ≥ 4xy/(x + y) 
=> (x + y) ≥ 4xy/(x + y) 
=> (x + y)/xy ≥ (4xy)/[xy(x + y)] 
=> 1/x + 1/y ≥ 4/(x + y) (*) 
Áp dụng (*) với x = p - a và y = p - b ta được: 
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4) 
Chứng minh tương tự ta được: 
1/(p - a) + 1/(p - c) ≥ 4/b (5) 
1/(p - b) + 1/(p - c) ≥ 4/a (6) 
Cộng vế với vế của (4);(5) và (6) ta được: 
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c) 
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) ) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Dấu bằng xảy ra <=> a = b = c. 

Sai thì thôi nha !!! k mk nha

3 tháng 3 2019

\(a\ge b;a\ge c\Rightarrow a+a+a\ge a+b+c\Rightarrow3a\ge a+b+c\Rightarrow\frac{a+b+c}{3}\le a\) (1)

bđt tam giác: \(a< b+c\Rightarrow a+a< a+b+c\Rightarrow2a< a+b+c\Rightarrow a< \frac{a+b+c}{2}\)(2)

(1); (2) suy ra đpcm

25 tháng 12 2017

Chuẩn hóa: \(a+b+c=1\)

Vì a, b, c là 3 cạnh của tam giác nên ta có: \(a,b,c\in\left(0;\frac{1}{2}\right)\)

Bài toán ban đầu trở thành:

\(P=\left(\frac{4}{1-a}-\frac{1}{a}\right)+\left(\frac{4}{1-b}-\frac{1}{b}\right)+\left(\frac{4}{1-c}-\frac{1}{c}\right)\le9\)

Ta chứng minh: 

\(\frac{4}{1-x}-\frac{1}{x}\le18x-3\)

\(\Leftrightarrow\left(3x-1\right)^2\left(1-2x\right)\ge0\) (đúng)

Áp dụng bài toán ta được

\(P\le18\left(a+b+c\right)-9=9\)

Vậy ......

25 tháng 12 2017

Nhan 2 ve voi a+b+c se ra

14 tháng 2 2018

a,b,c là độ dài 3 cạnh 1 tam giác nên a+b>c, b+c>a,c+a>b

Ap dụng \(\frac{x}{y}< \frac{x+z}{y+z}\) với \(x< y\Rightarrow\)\(\frac{a}{b+c}< \frac{a+a}{b+c+a}=\frac{2a}{a+b+c}\)

Tương tự \(\frac{b}{c+a}< \frac{2b}{a+b+c}\)

               \(\frac{c}{a+b}< \frac{2c}{a+b+c}\)

Cộng 3 bđt được đpcm

 4 đề cô Hòa đây nhé Hoàng https://olm.vn/thanhvien/1109157   . Mai thi rồi chúc thi tốt nhé my friend . Phải mang giải về nhé.  Đề 1 :  Đề trường Đăng Đạo năm 2013-2014Bài 1 : ( 1,5 điểm )a) Thực hiện phép tính :       \(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^.-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)b) Tính tỉ...
Đọc tiếp

 4 đề cô Hòa đây nhé Hoàng https://olm.vn/thanhvien/1109157   . Mai thi rồi chúc thi tốt nhé my friend . Phải mang giải về nhé. 

 Đề 1 :  Đề trường Đăng Đạo năm 2013-2014

Bài 1 : ( 1,5 điểm )

a) Thực hiện phép tính : 

      \(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^.-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

b) Tính tỉ số \(\frac{A}{B}\) biết \(A=\frac{34}{7.13}+\frac{51}{13.22}+\frac{85}{22.37}+\frac{68}{37.49};B=\frac{39}{7.16}+\frac{65}{16.31}+\frac{52}{31.43}+\frac{26}{43.49}\)

Bài 2: ( 2 điểm ) Tìm x biết 

a) \(\left(\frac{2}{3}\right)^{2x+3}=\frac{2187}{128}\)

b) \(\left(2x-5\right)^{2007}=\left(2x-5\right)^{2005}\)

c) \(|x-7|+2x+5=6\)

Bài 3 ( 2 điểm )

a) Cho a+b+c =1010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{201}\)Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

b) Cho x = by+cz ; y= ax+cz ; z=ax+by

Chứng minh rằng \(H=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)

Bài 4 ( 1,5 điểm )

a) Số A được chia thành 3 số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\). Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A.

b) Tìm giá trị nhỏ nhất của \(A=|x-2006|=|2007-x|\) Khi x thay đổi

Bài 5 :

Cho tam giác cân ABC ( AB=AC ). Trên tia đối của tia  BC và CB lấy theo thứ tự các điểm D và E sao cho BD=CE.

a) Chứng minh tam giác ADE là tam giác cân

b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE.

c) Từ B và C kẻ BH và Ck theo thứ tự vuông góc với AD và AE. Chứng minh BH=CK.

d) Chứng minh ba đường thẳng AM,BH và CK gặp nhau tại 1 điểm >

e) Gọi 2 tia phân giác ngoài tại các đỉnh D và E của tam giác ADE là F. Chứng minh rằng F thuộc tia AM và khoảng cách từ F đến 2 cạnh của tam giác ADE bằng nhau 

0
AH
Akai Haruma
Giáo viên
27 tháng 6 2019

Lời giải:

Vì $a,b,c$ là 3 cạnh tam giác nên $a+b-c,a+c-b, b+c-a>0$
Áp dụng BĐT Cauchy dạng \(xy\leq \left(\frac{x+y}{2}\right)^2\) ta có:

\((a+b-c)(a+c-b)\leq \left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2\)

\((a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2\)

\((b+c-a)(a+c-b)\leq \left(\frac{b+c-a+a+c-b}{2}\right)^2=c^2\)

Nhân theo vế các BĐT trên:

\([(a+b-c)(a+c-b)(b+c-a)]^2\leq (abc)^2\)

\(\Rightarrow (a+b-c)(a+c-b)(b+c-a)\leq abc\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$.