Cho a là nghiệm dương của phương trình \(4x^2+x\sqrt{2}-\sqrt{2}=0\)
Tính A= \(\frac{a+1}{\sqrt{a^4+a+1-a^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(4a^2+a\sqrt{2}-\sqrt{2}=0\)
\(\Leftrightarrow2\sqrt{2}a^2+a-1=0\)
\(\Leftrightarrow a+1=2-2\sqrt{2}a^2\) thế vô ta được
\(\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{2-2\sqrt{2}a^2}{\sqrt{a^4+2-2\sqrt{2}a^2}-a^2}\)
\(=\frac{2-2\sqrt{2}a^2}{\sqrt{\left(\sqrt{2}-a^2\right)^2}-a^2}=\frac{\sqrt{2}\left(\sqrt{2}-2a^2\right)}{\sqrt{2}-2a^2}=\sqrt{2}\)
Ta có:
\(4a^2+a\sqrt{2}-\sqrt{2}=0\)
\(\Leftrightarrow2\sqrt{2}a^2+a-1=0\)
\(\Leftrightarrow a+1=2-2\sqrt{2}a^2\) thế vô ta được
\(\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{2-2\sqrt{2}a^2}{\sqrt{a^4+2-2\sqrt{2}a^2}-a^2}\)
\(=\frac{2-2\sqrt{2}a^2}{\sqrt{\left(\sqrt{2}-a^2\right)^2}-a^2}=\frac{\sqrt{2}\left(\sqrt{2}-2a^2\right)}{\sqrt{2}-2a^2}=\sqrt{2}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Sử dụng delta thôi!
Xét \(4x^2+\sqrt{2}x-\sqrt{2}=0\) có \(4\cdot\left(-\sqrt{2}\right)=-4\sqrt{2}< 0\) nên PT có 2 nghiệm phân biệt
Mà a là nghiệm nguyên dương của PT nên ta có: \(4a^2+\sqrt{2}a-\sqrt{2}=0\)
Vì a > 0 \(\Rightarrow4a^2=-\sqrt{2}a+\sqrt{2}\)
\(\Rightarrow a^2=\frac{\sqrt{2}-\sqrt{2}a}{4}=\frac{\left(1-a\right)\sqrt{2}}{4}=\frac{1-a}{2\sqrt{2}}\)
\(\Rightarrow a^4=\left(\frac{1-a}{2\sqrt{2}}\right)^2=\frac{1-2a+a^2}{8}\)
Thay vào ta được:
\(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{\left(\sqrt{a^4+a+1}\right)^2-a^4}\)
\(=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a^4+a+1-a^4}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a+1}=\sqrt{a^4+a+1}+a^2\)
\(=\sqrt{\frac{1-2a+a^2}{8}+a+1}+\frac{1-a}{2\sqrt{2}}=\sqrt{\frac{a^2+6a+9}{8}}+\frac{1-a}{2\sqrt{2}}\)
\(=\frac{a+3}{2\sqrt{2}}+\frac{1-a}{2\sqrt{2}}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Vậy \(B=\sqrt{2}\)
\(A=\frac{a+1}{a^2+a+1-a^2}=\frac{a+1}{a+1}=1\)