K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

Gọi d = ƯCLN ( 2n+3,4n+8)

Khi đó \(2n+3⋮d\)và \(4n+8⋮d\)

Từ \(2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\)

Suy ra \(\left(4n+8\right)-2.\left(2n+3\right)⋮d\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)

Vì \(2n\)là số chẵn , 3 là số lẻ nên \(2n+3\)là số lẻ nên \(d\ne2\)nên d =1 

Suy ra ƯCLN ( 2n+3,4n+8) = 1 nên \(\frac{2n+3}{4n+8}\)là phân số tối giản

13 tháng 5 2017

Gọi UCLN(2n+3;4n+8) là d.

Chứng minh d=1 hoặc 2(cơ bản).

Vì 2n+3 lẻ=>d ko thể là 2.

=>d=1.

=>kết luận .

Vậy...