Câu 1: Tính
a) A=\(\left(\dfrac{1}{5^2}-1\right).\left(\dfrac{1}{6^2}-1\right).\left(\dfrac{1}{7^2}-1\right)....\left(\dfrac{1}{2025^2}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(4-\dfrac{12}{5}\right).\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=\left(\dfrac{4}{1}-\dfrac{12}{5}\right).\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=\left(\dfrac{20}{5}-\dfrac{12}{5}\right).\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=\dfrac{8}{5}.\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=1-\dfrac{2}{5}.\dfrac{25}{-4}\)
\(=1-\dfrac{-5}{2}\)
\(=\dfrac{2}{2}-\dfrac{-5}{2}\)
\(=\dfrac{7}{2}\)
dài quá nên mik sẽ giải lần lượt mỗi câu trả lời là một câu nhá bạn!!
Giải:
a)(4-12/5).25/8-2/5:-4/25
=8/5.25/8-(-5/2)
=5+5/2
=15/2
b)(-5/24+3/4-7/12):(-5/16)
=-1/24:(-5/16)
=2/15
c)6/7+5/4:(-5)-(-1/28).(-2)2
=6/7+(-1/4)-(-1/28).4
=6/7-1/4-(-1/7)
=6/7-1/4+1/7
=(6/7+1/7)-1/4
=1-1/4
=3/4
Chúc bạn học tốt!
a: \(=6+\dfrac{4}{5}-1-\dfrac{2}{3}-3-\dfrac{4}{5}\)
\(=2-\dfrac{2}{3}=\dfrac{4}{3}\)
b: \(=7+\dfrac{5}{9}-2-\dfrac{3}{4}-3-\dfrac{5}{9}=2-\dfrac{3}{4}=\dfrac{5}{4}\)
c: =6+7/7-1-3/4-2-5/7
=3+2/7-3/4
=84/28+8/28-21/28
=84/28-13/28
=71/28
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25
Các bạn trả lời giúp mk nha. Mk đang cần gấp. Chều nay mk kiểm tra rồi
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
a) \(A=\left(-0,75-\dfrac{1}{4}\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right):\left(-3\right)\)
\(A=\left(-0,75-0,25\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right)\cdot\dfrac{-1}{3}\)
\(A=\left(-1\right):\left(-5\right)+\dfrac{1}{48}-\dfrac{1}{18}\)
\(A=\dfrac{1}{5}+\dfrac{1}{48}-\dfrac{1}{18}\)
\(A=\dfrac{119}{720}\)
b) \(B=\left(\dfrac{6}{25}-1,24\right):\dfrac{3}{7}:\left[\left(3\dfrac{1}{2}-3\dfrac{2}{3}\right):\dfrac{1}{14}\right]\)
\(B=\left(0,24-1,24\right):\dfrac{3}{7}:\left[\left(\dfrac{7}{2}-\dfrac{11}{3}\right):\dfrac{1}{14}\right]\)
\(B=-1:\dfrac{3}{7}:\left(-\dfrac{1}{6}:\dfrac{1}{14}\right)\)
\(B=-\dfrac{7}{3}:-\dfrac{7}{3}\)
\(B=1\)
a, A = (-0,75 - \(\dfrac{1}{4}\)) : (-5) + \(\dfrac{1}{48}\) - (- \(\dfrac{1}{6}\)) : (-3)
A = -(0,75 + 0,25): (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = -1 : (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{1}{5}\) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{53}{240}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{119}{720}\)
b, B = (\(\dfrac{6}{25}\) - 1,24): \(\dfrac{3}{7}\): [(3\(\dfrac{1}{2}\) - 3\(\dfrac{2}{3}\)): \(\dfrac{1}{14}\)]
B = (0,24 - 1,24): \(\dfrac{3}{7}\):[(\(\dfrac{7}{2}\)-\(\dfrac{11}{3}\)): \(\dfrac{1}{14}\)]
B = -1: \(\dfrac{3}{7}\):[ (-\(\dfrac{1}{6}\) : \(\dfrac{1}{14}\))]
B = -1: \(\dfrac{3}{7}\): (- \(\dfrac{7}{3}\))
B = 1 \(\times\) \(\dfrac{7}{3}\) \(\times\) \(\dfrac{3}{7}\)
B = 1
a) \(\left(\dfrac{2}{3}-\dfrac{1}{2}-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}-\dfrac{1}{7}\right)\)
\(=-\dfrac{1}{6}\cdot\dfrac{17}{28}\)
\(=-\dfrac{17}{168}\)
b) \(\left(\dfrac{15}{21}\div\dfrac{5}{7}\right)\div\left(\dfrac{6}{5}\div2\right)\)
\(=1\div\dfrac{3}{5}\)
\(=\dfrac{5}{3}\)
Để tính giá trị của biểu thức $A = \frac{1}{5^2-1} \cdot \frac{1}{6^2-1} \cdot \frac{1}{7^2-1} \cdots \frac{1}{2025^2-1}$, ta có thể sử dụng công thức $a^2-b^2=(a+b)(a-b)$ để đơn giản hóa các mẫu số trong từng phân số. Ta có:
\begin{align*}
A &= \frac{1}{(5+1)(5-1)} \cdot \frac{1}{(6+1)(6-1)} \cdot \frac{1}{(7+1)(7-1)} \cdots \frac{1}{(45+1)(45-1)} \
&= \frac{1}{4 \cdot 6} \cdot \frac{1}{5 \cdot 7} \cdot \frac{1}{6 \cdot 8} \cdots \frac{1}{46 \cdot 44} \
&= \frac{1}{4} \cdot \frac{1}{5} \cdot \frac{1}{7} \cdot \frac{1}{8} \cdots \frac{1}{44} \cdot \frac{1}{46} \
&= \frac{1}{4} \cdot \frac{1}{46} \cdot \frac{1}{5} \cdot \frac{1}{44} \cdot \frac{1}{7} \cdot \frac{1}{42} \cdots \frac{1}{23} \cdot \frac{1}{21} \
&= \frac{1}{2} \cdot \frac{1}{23} \cdot \left( \frac{1}{2} - \frac{1}{23} \right) \cdot \frac{1}{3} \cdot \left( \frac{1}{3} - \frac{1}{22} \right) \cdots \frac{1}{20} \cdot \left( \frac{1}{20} - \frac{1}{25} \right) \
&= \frac{1}{2} \cdot \frac{1}{23} \cdot \frac{21}{22} \cdot \frac{1}{3} \cdot \frac{19}{22} \cdots \frac{1}{20} \cdot \frac{5}{25} \
&= \frac{1}{2} \cdot \frac{21}{23} \cdot \frac{19}{22} \cdot \frac{17}{20} \cdots \frac{3}{5} \cdot \frac{1}{5} \
&= \frac{21 \cdot 19 \cdot 17 \cdots 3}{2 \cdot 23 \cdot 22 \cdots 5} \cdot \frac{1}{5} \
&= \frac{21 \cdot 19 \cdot 17 \cdots 3}{2 \cdot 23 \cdot 22 \cdots 6} \
\end{align*}
Vậy giá trị của biểu thức $A$ là $\frac{21 \cdot 19 \cdot 17 \cdots 3}{2 \cdot 23 \cdot 22 \cdots 6}$.