Cho x,y,z theo thứ tự lập thành CSN với q ≠ 1; x,2y,3z theo thứ tự lập thành CSC với d ≠ 0. Tìm q.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{x+z}{2}\)
\(\left(y-4\right)^2=xz\)
\(\left(y-4\right)=\dfrac{x+z-9}{2}\)
3 pt 3 ẩn, kiên trì chút chắc giải được á :D
Chọn A
Theo giả thiết ta có :
y = x q ; z = x q 2 x + 3 z = 2 2 y ⇒ x + 3 x q 2 = 4 x q ⇒ x 3 q 2 − 4 q + 1 = 0 ⇔ x = 0 3 q 2 − 4 q + 1 = 0 .
Nếu x = 0 ⇒ y = z = 0 ⇒ công sai của cấp số cộng: x ; 2y ; 3z bằng 0 (vô lí).
nếu
3 q 2 − 4 q + 1 = 0 ⇔ q = 1 q = 1 3 ⇔ q = 1 3 q = 1 .
Đáp án B
Vì x , y , z > 0 theo thứ tự lập thành 1 CSN nên z = q y = q 2 x .
Vì log a x , log a y , log a 3 z theo thứ tự lập thành cấp số cộng nên 2 log a y = log a x + log a 3 z
⇔ 4 log a y = log a x + 3 log a z ⇔ 4 log a q x = log a x + 3 log a q 2 x ⇔ log a q 4 x 4 = log a x q 3 x 3
⇔ q 4 x 4 = q 6 x 4 ⇒ q = 1 ⇒ x = y = z ⇒ P = 1959 + 2019 + 60 = 4038
Đáp án D
Ta có y 2 = x z và
log a x + log a 3 = 2 log 2 y ⇔ log a x + log a z 3 = log a y 4 ⇒ x z 3 = y 4 − x 2 z 2 ⇒ x = z ⇒ x = y = z
Lời giải:
Có:
$b=a+d$
$c=a+2d$
$c=bq$
$a=bq^2$
$\Rightarrow abc=bq^2.b.bq=(bq)^3=8$
$\Rightarrow bq=2$
$\Rightarrow c=2$
$a=bq^2=bq.q=2q$
$b=a+d=2q+d$
$2=c=a+2d=2q+2d\Rightarrow q+d=1$
$\Rightarrow b=2q+d=q+(q+d)=q+1$. Mà $bq=2$ nên:
$q(q+1)=2$
$\Leftrightarrow (q-1)(q+2)=0$
$\Rightarrow q=1$ hoặc $q=-2$
Vì $a,b,c$ đều dương nên $q>0$. Do đó $q=1$
\(u_3+u_7+...+u_{35}=u_1q^2+u_1q^6+...+u_1q^{34}\)
\(=u_1q^2\left(1+q^4+q^8+...+q^{32}\right)=u_1q^2.\frac{\left(q^4\right)^9-1}{q^4-1}=524286\)
2/ \(u_1^2+u_2^2+...+u_{20}^2=u_1^2+u_1^2q^2+u_1^2q^4+...+u_1^2q^{38}\)
\(=u_1^2\left(1+q^2+q^4+...+q^{38}\right)=u_1^2\frac{\left(q^2\right)^{20}-1}{q^2-1}=\frac{3^{20}-1}{2}\)
3/
\(u_1=2;u_n=18\)
\(u_1^2+u_2^2+...+u_n^2=484\)
\(\Leftrightarrow u_1^2+u_1^2q^2+...+u_1^2q^{2\left(n-1\right)}=484\)
\(\Leftrightarrow u_1^2\left(1+q^2+...+q^{2\left(n-1\right)}\right)=484\)
\(\Leftrightarrow1+q^2+...+q^{2\left(n-1\right)}=121\)
\(\Leftrightarrow\frac{q^{2n}-1}{q^2-1}=121\)
Mà \(u_n=u_1q^{n-1}\Rightarrow q^{n-1}=\frac{u_n}{u_1}=9\Rightarrow q^n=9q\Rightarrow q^{2n}=81q^2\)
\(\Rightarrow\frac{81q^2-1}{q^2-1}=121\Rightarrow81q^2-1=121q^2-121\)
\(\Rightarrow q^2=3\Rightarrow q=\pm\sqrt{3}\)
Lời giải:
Ta có:
$y=xq$
$z=yq=xq^2$
Và:
$2y=x+d$
$3z=2y+d=x+2d$
$\Rightarrow 2xq=x+d$ và $3xq^2=x+2d$
$\Rightarrow 3xq^2-2xq=d$
$\Leftrightarrow xq(3q-2)=d$
Khi đó, thay vô $2xq=x+d$ thì:
$\frac{2d}{3q-2}=\frac{d}{q(3q-2)}+d$
$\Leftrightarrow \frac{2}{3q-2}=\frac{1}{q(3q-2)}+1$ (do $d\neq 0$)
$\Leftrightarrow 2q=1+q(3q-2)$
$\Leftrightarrow 3q^2-4q+1=0$
$\Leftrightarrow (q-1)(3q-1)=0$
Vì $q\neq 1$ nên $q=\frac{1}{3}$