Giải bất phương trình
a) 3x2-3x(-2+x)<hoặc= 36
b) (x+2)2-9>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3x^2-3x\left(-2+x\right)\le36\)
\(\Leftrightarrow3x^2+6x-3x^2-36\le0\)
\(\Leftrightarrow6x\le36\)
\(\Leftrightarrow x\le6\)
\(b,\left(x+2\right)^2-9>0\)
\(\Leftrightarrow\left(x+2\right)^2-3^2>0\)
\(\Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x+5>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>-5\end{matrix}\right.\)
b: =>(x+2-3)(x+2+3)>0
=>(x+5)(x-1)>0
=>x-1>0 hoặc x+5<0
=>x>1 hoặc x<-5
-3x2 + x + 4 ≥ 0
Xét tam thức f(x) = -3x2 + x + 4 có hai nghiệm x = -1 và x = 4/3, hệ số a = -3 < 0.
Do đó f(x) ≥ 0 khi -1 ≤ x ≤ 4/3.
Vậy tập nghiệm của bất phương trình là: T = [-1; 4/3]
Chọn A
Ta có: f ' ( x ) = 6 x 2 − 6 x
Để
f ' ( x ) ≥ 0 ⇔ 6 x 2 − 6 x ≥ 0 ⇔ x ≤ 0 x ≥ 1
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
`a,3x^2-3x(-2+x) <= 36`
`<=> 3x^2 + 6x -3x^2 <= 36`
`<=> 6x <= 36`
`<=> x <= 6`
Vậy bpt đã cho có tập nghiệm `x <= 6`
`b, (x+2)^2 -9>0`
`<=> (x+2)^2 > 9`
`<=>(x+2)^2 > 3^2`
`<=> x+2> +- 3`
`<=> x>1;-5`
Vậy bpt đã cho có tập nghiệm `x>1` hoặc `x> -5`
a: =>3x^2+6x-3x^2<=36
=>6x<=36
=>x<=6
b: =>(x-1)(x+5)>0
=>x>1 hoặc x<-5