Tìm A, biết :1/7+1/91+1/247+...+1/1147
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+...+\frac{1}{1147}\)
\(A=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+....+\frac{1}{31.37}\)
\(A=\frac{6}{6}\left(\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+...+\frac{1}{31.37}\right)\)
\(A=\frac{1}{6}\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{31.37}\right)\)
\(A=\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+....+\frac{1}{31}-\frac{1}{37}\right)\)
\(A=\frac{1}{6}\left(1-\frac{1}{37}\right)\)
\(A=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
\(A=\frac{1}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{31.37}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
A=\(\frac{1}{1.7}+\frac{1}{7.13}+...+\frac{1}{31.37}\)= \(\frac{1}{6}.\)(\(\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{31.37}\))=\(\frac{1}{6}.\)(\(\frac{1}{1}-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{31}-\frac{1}{37}\)) = \(\frac{1}{6}.\left(\frac{1}{1}-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
ĐS: A=6/37
em làm như sau nhé : :)))
6A= 6/7 + 6/91+...+ 6/1147
<=>6A= 6/7+1/7-1/13+1/13-1/19+...+1/31-1/37
<=> 6A= 6/7+1/7 -1/37
<=> A=6/37
\(\dfrac{1}{7}+\dfrac{1}{91}+\dfrac{1}{247}+\dfrac{1}{475}+\dfrac{1}{775}+\dfrac{1}{1147}\)
\(=\dfrac{1}{1.7}+\dfrac{1}{7.13}+\dfrac{1}{13.19}+\dfrac{1}{19.25}+\dfrac{1}{25.31}+\dfrac{1}{31.37}\)
\(=\dfrac{1}{6}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{37}\right)\)
\(=\dfrac{1}{6}\left(1-\dfrac{1}{37}\right)\)
\(=\dfrac{1}{6}.\dfrac{36}{37}\)
\(=\dfrac{6}{37}\)
\(#Wendy.Dang\)
#)Giải :
\(A=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(A=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
\(A=1+\frac{1}{7}-\frac{1}{7}+\frac{1}{13}-\frac{1}{13}+\frac{1}{19}-\frac{1}{19}+\frac{1}{25}-\frac{1}{25}+\frac{1}{31}-\frac{1}{31}+\frac{1}{37}\)
\(A=\frac{1}{7}+\frac{1}{37}\)
\(A=\frac{44}{259}\)
P/s : Đề bn ghi thiếu nha, còn có 1/475 nữa ( xem đầu phần giải của mình )
#~Will~be~Pens~#
1/7 +1/91 +1/247 + 1/475 + 1/775 + 1/1147
Đặt A=1/7 +1/91 +1/247 + 1/475 + 1/775 + 1/1147
A=1/(1.7)+1/(7.13)+1/(13.19)+...+1/(31...
A=(1/6)x( 1 - 1/7 + 1/7 - 1/13 +... +1/31-1/37)
A=(1/6)x(1-1/37)
A=(1/6)x(36/37)
A=6/37
Ta có : \(A=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+...+\frac{1}{1147}\)
\(=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+...+\frac{1}{31\cdot37}\)
\(=\frac{1}{6}\cdot\left(\frac{6}{1\cdot7}+\frac{6}{7\cdot13}+...+\frac{6}{31\cdot37}\right)\)
\(=\frac{1}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\left(1-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\frac{36}{37}=\frac{6}{37}\)
Vậy \(A=\frac{6}{37}\)
chắc bạn viết sai đầu bài rồi