K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

8 tháng 10 2017

1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)

\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)

\(\Rightarrow27>x>18\)

Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)

Vậy....

7 tháng 12 2016

\(\frac{x^3-2x^2+x+2}{x-2}=\frac{x^2\left(x-2\right)+\left(x-2\right)+4}{x-2}=\frac{\left(x-2\right)\left(x^2+1\right)+4}{x-2}\)

\(=\frac{\left(x-2\right)\left(x^2+1\right)}{x-2}+\frac{4}{x-2}=x^2+1+\frac{4}{x-2}\)

\(x^2+1+\frac{4}{x-2}\) nguyên khi và chỉ khi 4 chia hết cho x-2

<=>\(x-2\inƯ\left(4\right)=\left\{-4;-1;1;4\right\}\)

<=>\(x\in\left\{-2;1;3;6\right\}\)

Vậy ..................

19 tháng 2 2019

a) \(A=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right):\frac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)(ĐKXĐ: \(\hept{\begin{cases}x\ne\pm2\\x\ne3\end{cases}}\))\(=\left[\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{4-x^2}\right]:\frac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)\(=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}.\frac{2-x}{x-3}=\frac{4x}{x-3}\)

b) l\(x-5\)l\(=2\Leftrightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\left(n\right)\\x=3\left(l\right)\end{cases}\Rightarrow A=\frac{4.7}{7-3}=\frac{28}{4}=7}\)
c)
* Để A có giá trị là một số nguyên thì \(A=\frac{4x}{x-3}=\frac{4x-12+12}{x-3}=4+\frac{12}{x-3}\)là một số nguyên hay \(\frac{12}{x-3}\)là một số nguyên \(\Rightarrow x-3\inƯ\left(12\right)\Rightarrow S=\left(-9;-3;-1;0;1;4;5;6;7;9;15\right)\)(1)
* Để \(A=4+\frac{12}{x-3}< 4\Leftrightarrow\frac{12}{x-3}< 0\) thì \(x-3< 0\Leftrightarrow x< 3\)(2)
(1)(2) \(\Rightarrow S=\left(-9;-3;-1;0;1\right)\)

Để A là số nguyên thì \(x^2\left(x-2\right)+x-2+4⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{3;1;4;0;6;-2\right\}\)

24 tháng 6 2020

Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)

Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)

hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)

Ta có bảng:

x+31-12-2
x-2-4-1-5
x-11-13-3
x204

-2

Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)